Friday, February 25, 2022

Transmission studies from blood of Alzheimer disease patients and healthy relatives July 1988 to 2022, a review

Transmission studies from blood of Alzheimer disease patients and healthy relatives July 1988 to 2020, a review

Proc. Natl. Acad. Sci. USA

Vol. 85, pp. 4898-4901, July 1988

Medical Sciences

Transmission studies from blood of Alzheimer disease patients and healthy relatives

Elias E. MANUELIDIS, JOHN M. DE FIGUEIREDO, Jung H. Kim, WILLIAM W. FRITCH,

AND LAURA MANUELIDIS.

Section of Neuropathology, Yale University, School of Medicine, New Haven, CT 06510

Communicated by Lewis Thomas, March 28, 1988

ABSTRACT 

The etiology of Alzheimer disease (AD) is ‘unknown. To investigate the transmissibility of AD, the buffy coat of the blood from 11 relatives of AD patients, including 2 with suspicious or early signs of AD, was inoculated intracerebrally into hamsters. In these pilot experiments, 5 individuals produced histologically documented spongiform encephalopathy on primary passage in recipient hamsters. Material from 3 of these positives was serially transmitted in a second passage. ‘The histological alterations observed in the brains of positive hamsters were similar to those seen in experimental Creutzfeldt-Jakob disease (CJD). These transmission results raise the intriguing possibility that CJD-like agents may be involved in at least some forms of AD.

Alzheimer disease (AD), the most common and devastating ‘dementia of humans, with catastrophic effects for patients and their families, still remains a disease of unknown etiology. Investigators have advanced several hypotheses on the nature of AD, and for several years the working hypothesis in our laboratory has been that AD may be a transmissible dementia not unlike Creutzfeldt Jakob disease (CJD) of humans. CJD is a dementia of unquestionable infectious etiology; it was successfully transmitted several years ago to subhuman primates and monkeys (1, 2) and, in our laboratory, to several species of rodents (3, 4)

Similarities between AD and CJD have been noted by several investigators, and these similarities served as an impetus to experimentally reevaluate the possible transmissibility of AD. It has been stated that the clinical similarities between AD and CJD may be so great in some cases that only autopsy can clarify the situation (5). Overlapping of lesions between AD and CJD have also been noted in rare instances (6-10). Reference is made to the concomitant occurrence in the same individual of plaques and tangles, which are characteristic of AD, with spongy changes, which are the most prominent histological lesions of CJD. These cases present neuropathologists with diagnostic challenges. Furthermore, AD and CJD are known to occur, although rarely, in members of the same family (11-13). It should be emphasized that all above citations (513) must be considered as stimulating but ‘anecdotal. Firm evidence for an infectious etiology in AD up to the present time is entirely lacking. Indeed, attempts to transmit AD from patients to convenient laboratory animals from brain tissue of two sporadic cases in our laboratory failed (14). Similar negative results were obtained in the laboratory ‘of Gajdusek and Gibbs, where numerous transmissions were attempted with brain material from AD patients (15). The widely quoted report of successful transmission of two familial cases of AD has been proven to be irreproducible (15). However, all of these negative attempts on transmission of AD to animals have not entirely deterred us. Notably, all negative AD transmission experiments have been undertaken with human brain tissue at terminal stages of AD.

We considered that we were looking at the wrong end of the, human disease (14). Perhaps it would be rewarding to check infectivity at early stages of AD, when patients have only mild signs or no symptoms at all. We reasoned that in AD, as in some conventional viral encephalitides—e.g., polio—the titer of the virus at end stages of disease might be so low as to be undetectable in animal transmission experiments (14). With these thoughts in mind we began in 1984 pilot experiments with human volunteers.

To obtain human brain tissue for experimentation from apparently healthy humans would have been both impossible and unethical. However, we were the first to demonstrate viremia in experimental and human CJD by using the buffy coat of the blood (16, 17). We speculated that viremia might transiently occur during some early stage of AD.

MATERIALS AND METHODS

Eleven human volunteers, members of families in which at least two relatives (siblings or parents) had AD, generously cooperated and were psychiatrically and psychologically examined by one of us (J.M.d.F.). With two exceptions, all volunteers were healthy and still continue to be free of any signs and symptoms 3 years after the commencement of our studies. The two exceptions were volunteer no. 5 (Table 1), diagnosed as having early AD when blood was drawn, and no. 8, who at the time of blood donation had suspicious signs of AD. Now, 3 years later, volunteer no. 8 has unquestionable manifestations of the disease. The following relationship existed between our human volunteers: nos. 5 and 6 are brother and sister, nos. 8 and 9 are mother and daughter, and nos. 10 and 11 are sisters (Table 1). The preponderance of female subjects was merely circumstantial or accidental: no attempt was made to select subjects for either age or gender. In reality, we gratefully accepted anyone who was willing to cooperate with us. Twenty milliliters of blood was drawn from each volunteer in a heparinized tube, the buffy coat was collected and homogenized ina 1:1 volume of saline, and 0.05 ml of this homogenate was injected intracerebrally into each of six young (6-8 weeks) LVG (outbred) hamsters per human buffy coat sample by techniques described in detail elsewhere (16, 17). Always, three hamsters were kept in a numbered cage and were observed daily for any unusual signs by at east two technicians and ourselves.

RESULTS

‘The buffy coat of five volunteers (nos. 2, 7, 8,9, and 11; Table 1) produced an unquestionable spongiform encephalopathy in hamsters (Figs. 1 and 2). Nine animals (Table 1) developed the spongiform encephalopathy between 196 and 517 days after inoculation with an average incubation of 352 days. One additional animal had to be sacrificed 104 days after inoculation because it was severely wounded by cage mates: even at this relatively early postinoculation time, this hamster showed positive lesions of a spongiform encephalopathy (Fig. 2). The histological changes in the positive hamsters consisted of spongy changes in the neuropil, mild astrocytosis, and neuronal loss. They were similar to the histological alterations described in experimental CJD in our laboratory in guinea pigs, hamsters, and mice (18, 19). There are two criteria in our laboratory in evaluating positive animals, and these are positive histology and successful transmission. Only animals with well-preserved brains showing unquestionable vacuolization of the neuropil were labeled as positive. When the spongy changes in the brains of animals were not clear-cut (ie., questionable), they were scored as +. In such instances, a second passage from first passage material was undertaken. In case of doubtful histological evaluation, a second passage in our laboratory is a must. Nine animals were found dead shortly after inoculation as a result of inoculation trauma or fighting with cage mates prior to 103 days and were discarded. In addition, 33 animals were found dead long after they survived intracerebral inoculation, at times coinciding with the incubation periods of our positive animals. Some of these animals, were also wounded by cage mates (after 103 days). Although postmortem changes prevented any histological evaluation of the brains of these animals, no pathological changes at autopsy ‘were found in the viscera in these animals that survived up to 512 days. Since the clinical signs in first passage animals were subtle or difficult to score, their cause of death was ambiguous.

A second passage attempted from first passage hamster brain material in three cases (nos. 2, 8, and 11), done to determine serial transmission, resulted in all three cases in a greater number of positive transmissions and in florid more marked spongy changes in the brain (Fig. 3). With material from nos. 2 and 8, four of six animals in each case were positive and two were found dead; with no. 11, five hamsters tive and one was found dead. In the second serial passage, incubation periods were somewhat shorter—e.g., 299 days. It has been reported that in experimental CJD the incubation period during the second passage may be reduced by half (18). Also during the second passage the detection of clinical signs of the experimental disease was more evident. During the first passage the animals were thin and scruffy but otherwise alert and without any obvious neurological signs. During the second passage, however, the positive animals revealed clinical signs very similar to those of experimental CJD. The hamsters were thin, slow moving, depressed with hunched trunks, jumpy to noises, and ultimately immo! and moribund with closed eyes. These signs lasted from 3 to 4 days in some animals and up to 15 days in others. With the exception of volunteer no. 1, all remaining material from primary transmissions (positive, questionable, and negative) in Table 1 has also been recently inoculated for second passages and are pending. No material for second passage was available from volunteer no. 1.

‘The more ideal controls for this survey would have been healthy age- and gender-matched subjects who had been evaluated psychiatrically/psychologically. These were not available to us at the time of writing, but buffy coat material from as many such subjects as possible will now be collected for testing. Random samples from healthy age-matched sub- jects, although somewhat less ideal as controls, were not included in this pilot study by reason of expense. However, in addition to the three negative “internal controls” cited in Table 1, one human buffy coat from a healthy (not psychirically evaluated) middle-aged person* served as a control: this buffy coat material was injected into 36 guinea pigs, 36 hamsters, and 36 mice, none of which developed an encephalopathy. Moreover, intracerebral injection of several normal guinea pig buffy coat samples has failed to induce encephalopathy in guinea pigs (16). In addition, uninfected rodent or human central nervous system samples have failed to induce similar lesions in guinea pigs, hamsters, or mice.

DISCUSSION

Our data on the infectivity of the buffy coat from one patient with AD and four healthy relatives of AD patients open several avenues for research and raise numerous challenging ‘questions to be answered by tedious and very time-consuming experiments. In our laboratory, waiting for 2 or 3 years before an experiment or animal is declared negative is the rule rather than the exception. The first question that may be raised is whether a mix-up did occur in our laboratory. However, as is evident in Table 1, the experiments were consecutive (Table 1, experiment numbers), the animals from each patient were housed in the same cages (three per cage) and in the same racks; they were inspected and counted daily including weekends by two highly trained attendants. The organization of our P3 facility, the strict control imposed by ‘our biohazard committee, and the small number of easily ‘identifiable numbered animals in this rack make a single ‘missing animal noticeable within 12 hr. We consider such an error in our facility to have been very unlikely. Furthermore, the 10 positive first-passage animals are from five different experiments and therefore cannot be due to a mix-up of one or two animals, and at least three of these human samples were clearly positive on a subsequent second serial passage. Although in rare instances CJD can be clinically confused with AD in humans, it is also unlikely that all five positively transmitted AD relative cases here represent misdiagnosed CJD.

One might question whether the injection of the buffy coat might somehow activate or cause the phanerosis of an endogenous virus. However, in preliminary electron microscope studies no virus particles were detected in these hamster brains. Furthermore, such activation of an endogenous virus in hamsters was never observed, regardless of the type of the inocula in numerous transmission experiments with CJD or control material. With these reservations, we tentatively conclude that relatives of AD patients and one patient with early AD contained in their buffy coat an infectious or transmissible agent causing a deadly encephalopathy in animals. Furthermore, the encephalopathy caused by the human buffy coat is similar, if not identical, to that caused by human CJD samples (including buffy coat) in rodents. The fewer positive takes from a human source during the first passage in rodents, the long incubation periods, and the large numbers of unexplained “found dead” animals are reminiscent of our ‘experience with experimental CJD in guinea pigs, hamsters, and mice. Notably, all of the human donors are still live 3 ‘years after the onset of our study.

We are aware of both the importance as well as the numerical shortcoming of our pilot experiments, which should and will serve as stimulus for additional research. Because of the implications of our preliminary results, the desirability of its confirmation in other laboratories, and because of the great length of the latent period after inoculation, we are publishing these data without the extensive controls that will ultimately be necessary and that we are now preparing. We expect these results to be controversial. However, if the initial observations are confirmed by us as well as by others, which can take 3~4 additional years, it would indicate that at least some AD cases may have an infectious etiology comparable to CJD.

The the absence of any additional hard data, we would like to amplify on one possible hypothesis. Several years ago, we are parenthetically expressed the view that the low incidence of 1-2 per million per year of human CJD might be only “the tip of the iceberg” of a widespread asymptomatic infection (20). Could it conceivably be that a CJD-like agent is a silent resident in the human body, and that host factors (e.g., genetic, immunologic, humoral, including aging itself), as well as’ exogenous factors encountered during the lengthy human life span, elicit CJD in rare instances, whereas the same class of agent in more numerous instances induces a dementia of the AD type? It is conceivable that the same agent, when transferred from the human host to a different host—e.g., the hamster—can in turn cause a more simplified picture with only the expression of CJD spongiform changes—i.e., the hamster may be incapable of expressing the long-term AD neuropathological changes seen in humans. Indeed there are numerous examples of conventional viruses in which viral expression and pathology is markedly affected by species. Finally, transmission in our laboratory of infantile CJD (Alpers disease) as well as familial CJD (including those with a well-documented dominant inheritance pattern) suggests that CJD-like agents might at least in rare instances be integrated into the germ line, and this concept may have relevance for AD (21). We hope in the ensuing years to have some answers to at least some of these puzzling questions. Note Added in Proof. One patient (volunteer no. in the interim died. ‘Autopsy limited to the brain showed lesions of AD but no pathological changes of CJD.

Proc. Natl, Acad. Sci. USA 85 (1988) 4901

The authors are indebted to Dr. Sue Smith for assistance in psychological evaluation of the human volunteers and to Edward Zelazny for technical help. This work was supported by Grants AG (03106 and NS 12674 from the National Institutes of Health. These experiments were initiated as a result of a generous grant of the ‘Commonwealth Fund! 

‘Abbreviations: AD, Alzheimer disease; CJD, Creutzfeldt-Jakob


Alzheimer’s disease and Transmissible Spongiform Encephalopathy prion disease, Iatrogenic, what if ? 

Background 

Alzheimer’s disease and Transmissible Spongiform Encephalopathy disease have both been around a long time, and was discovered in or around the same time frame, early 1900’s. Both diseases are incurable and debilitating brain disease, that are in the end, 100% fatal, with the incubation/clinical period of the Alzheimer’s disease being longer (most of the time) than the TSE prion disease. Symptoms are very similar, and pathology is very similar.

Methods

Through years of research, as a layperson, of peer review journals, transmission studies, and observations of loved ones and friends that have died from both Alzheimer’s and the TSE prion disease i.e. Heidenhain Variant Creutzfelt Jakob Disease CJD.

Results

I propose that Alzheimer’s is a TSE disease of low dose, slow, and long incubation disease, and that Alzheimer’s is Transmissible, and is a threat to the public via the many Iatrogenic routes and sources. It was said long ago that the only thing that disputes this, is Alzheimer’s disease transmissibility, or the lack of. The likelihood of many victims of Alzheimer’s disease from the many different Iatrogenic routes and modes of transmission as with the TSE prion disease.

Conclusions

There should be a Global Congressional Science round table event set up immediately to address these concerns from the many potential routes and sources of the TSE prion disease, including Alzheimer’s disease, and a emergency global doctrine put into effect to help combat the spread of Alzheimer’s disease via the medical, surgical, dental, tissue, and blood arena’s. All human and animal TSE prion disease, including Alzheimer’s should be made reportable in every state, and Internationally, WITH NO age restrictions. Until a proven method of decontamination and autoclaving is proven, and put forth in use universally, in all hospitals and medical, surgical arena’s, or the TSE prion agent will continue to spread. IF we wait until science and corporate politicians wait until politics lets science _prove_ this once and for all, and set forth regulations there from, we will all be exposed to the TSE Prion agents, if that has not happened already.

end...Terry S. Singeltary Sr.

Ann N Y Acad Sci. 1982;396:131-43.

Alzheimer's disease and transmissible virus dementia (Creutzfeldt-Jakob disease).

Brown P, Salazar AM, Gibbs CJ Jr, Gajdusek DC.

Abstract

Ample justification exists on clinical, pathologic, and biologic grounds for considering a similar pathogenesis for AD and the spongiform virus encephalopathies. However, the crux of the comparison rests squarely on results of attempts to transmit AD to experimental animals, and these results have not as yet validated a common etiology. Investigations of the biologic similarities between AD and the spongiform virus encephalopathies proceed in several laboratories, and our own observation of inoculated animals will be continued in the hope that incubation periods for AD may be even longer than those of CJD.

https://nyaspubs.onlinelibrary.wiley.com/doi/abs/10.1111/j.1749-6632.1982.tb26849.x

http://onlinelibrary.wiley.com/doi/10.1111/j.1749-6632.1982.tb26849.x/abstract
CJD1/9 0185 Ref: 1M51A

IN STRICT CONFIDENCE

Dr McGovern From: Dr A Wight Date: 5 January 1993 Copies: Dr Metters Dr Skinner Dr Pickles Dr Morris Mr Murray

TRANSMISSION OF ALZHEIMER-TYPE PLAQUES TO PRIMATES

1. CMO will wish to be aware that a meeting was held at DH yesterday, 4 January, to discuss the above findings. It was chaired by Professor Murray (Chairman of the MRC Co-ordinating Committee on Research in the Spongiform Encephalopathies in Man), and attended by relevant experts in the fields of Neurology, Neuropathology, molecular biology, amyloid biochemistry, and the spongiform encephalopathies, and by representatives of the MRC and AFRC. 2. Briefly, the meeting agreed that:

i) Dr Ridley et als findings of experimental induction of p amyloid in primates were valid, interesting and a significant advance in the understanding of neurodegenerative disorders;

ii) there were no immediate implications for the public health, and no further safeguards were thought to be necessary at present; and

iii) additional research was desirable, both epidemiological and at the molecular level. Possible avenues are being followed up by DH and the MRC, but the details will require further discussion. 93/01.05/4.1
BSE101/1 0136
IN CONFIDENCE

5 NOV 1992 CMO From: Dr J S Metters DCMO 4 November 1992

TRANSMISSION OF ALZHEIMER TYPE PLAQUES TO PRIMATES

1. Thank you for showing me Diana Dunstan's letter. I am glad that MRC have recognized the public sensitivity of these findings and intend to report them in their proper context. This hopefully will avoid misunderstanding and possible distortion by the media to portray the results as having more greater significance than the findings so far justify.

2. Using a highly unusual route of transmission (intra-cerebral injection) the researchers have demonstrated the transmission of a pathological process from two cases one of severe Alzheimer's disease the other of Gerstmann-Straussler disease to marmosets. However they have not demonstrated the transmission of either clinical condition as the "animals were behaving normally when killed'. As the report emphasizes the unanswered question is whether the disease condition would have revealed itself if the marmosets had lived longer. They are planning further research to see if the conditions, as opposed to the partial pathological process, is transmissible. What are the implications for public health?

3. The route of transmission is very specific and in the natural state of things highly unusual. However it could be argued that the results reveal a potential risk, in that brain tissue from these two patients has been shown to transmit a pathological process. Should therefore brain tissue from such cases be regarded as potentially infective? Pathologists, morticians, neuro surgeons and those assisting at neuro surgical procedures and others coming into contact with "raw" human brain tissue could in theory be at risk. However, on a priori grounds given the highly specific route of transmission in these experiments that risk must be negligible if the usual precautions for handling brain tissue are observed.

92/11.4/1-1 BSE101/1 0137

4. The other dimension to consider is the public reaction. To some extent the GSS case demonstrates little more than the transmission of BSE to a pig by intra-cerebral injection. If other prion diseases can be transmitted in this way it is little surprise that some pathological findings observed in GSS were also transmissible to a marmoset. But the transmission of features of Alzheimer's pathology is a different matter, given the much greater frequency of this disease and raises the unanswered question whether some cases are the result of a transmissible prion. The only tenable public line will be that "more research is required" before that hypothesis could be evaluated. The possibility on a transmissible prion remains open. In the meantime MRC needs carefully to consider the range and sequence of studies needed to follow through from the preliminary observations in these two cases. Not a particularly comfortable message, but until we know more about the causation of Alzheimer's disease the total reassurance is not practical.

JS METTERS Room 509 Richmond House Pager No: 081-884 3344 Callsign: DOH 832 121/YdeS 92/11.4/1.2
BSE101/1 0136

IN CONFIDENCE

CMO

From: Dr J S Metters DCMO

4 November 1992

TRANSMISSION OF ALZHEIMER TYPE PLAQUES TO PRIMATES
CJD1/9 0185
Ref: 1M51A

IN STRICT CONFIDENCE

From: Dr. A Wight Date: 5 January 1993

Copies:

Dr Metters Dr Skinner Dr Pickles Dr Morris Mr Murray

TRANSMISSION OF ALZHEIMER-TYPE PLAQUES TO PRIMATES
 ''LINE TO TAKE"
6. Trouble has been brewing for some time. Dr Collinge is lobbying hard, and threatening to go to the media, claiming Dr Will is blocking his research...
snip...
[9. Whilst this matter is not at the moment directly concerned with the iatrogenic CJD cases from hgH, there remains a possibility of litigation here, and this presents an added complication. There are also results to be made available shortly (1) concerning a farmer with CJD who had BSE animals, (2) on the possible transmissibility of Alzheimer’s and (3) a CMO letter on prevention of iatrogenic CJD transmission in neurosurgery, all of which will serve to increase media interest.]
Tuesday, November 26, 2013

Transmission of multiple system atrophy prions to transgenic mice

‘’Our results provide compelling evidence that α-synuclein aggregates formed in the brains of MSA patients are transmissible and, as such, are prions.’’

http://www.pnas.org/content/110/48/19555.abstract.html
Transmission of a neurodegenerative disorder from humans to mice

The findings suggest that the α-synuclein deposits that form in the brains of patients with MSA behave like prions and are transmissible under certain circumstances, according to the authors. — N.Z.

α-Synuclein deposits in the brainstems of inoculated mice.

https://www.pnas.org/content/pnas/110/48/19175.full.pdf
Expanding spectrum of prion diseases

Jacob I. Ayers; Nick A. Paras; Stanley B. Prusiner 

Emerg Top Life Sci (2020) 4 (2): 155–167.


Prions were initially discovered in studies of scrapie, a transmissible neurodegenerative disease (ND) of sheep and goats thought to be caused by slow viruses. Once scrapie was transmitted to rodents, it was discovered that the scrapie pathogen resisted inactivation by procedures that modify nucleic acids. Eventually, this novel pathogen proved to be a protein of 209 amino acids, which is encoded by a chromosomal gene. After the absence of a nucleic acid within the scrapie agent was established, the mechanism of infectivity posed a conundrum and eliminated a hypothetical virus. Subsequently, the infectious scrapie prion protein (PrPSc) enriched for β-sheet was found to be generated from the cellular prion protein (PrPC) that is predominantly α-helical. The post-translational process that features in nascent prion formation involves a templated conformational change in PrPC that results in an infectious copy of PrPSc. Thus, prions are proteins that adopt alternative conformations, which are self-propagating and found in organisms ranging from yeast to humans. Prions have been found in both Alzheimer's (AD) and Parkinson's (PD) diseases. Mutations in APP and α-synuclein genes have been shown to cause familial AD and PD. Recently, AD was found to be a double prion disorder: both Aβ and tau prions feature in this ND. Increasing evidence argues for α-synuclein prions as the cause of PD, multiple system atrophy, and Lewy body dementia.

Keywords:α-synuclein, amyloid beta, neurodegeneration, prion, tau proteins 

Subjects:Aging, Molecular Bases of Health & Disease, Neuroscience


least we forget...

*** Transmission of Creutzfeldt-Jakob disease to a chimpanzee by electrodes contaminated during neurosurgery *** 

Gibbs CJ Jr, Asher DM, Kobrine A, Amyx HL, Sulima MP, Gajdusek DC. 

Laboratory of Central Nervous System Studies, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892. Stereotactic multicontact electrodes used to probe the cerebral cortex of a middle aged woman with progressive dementia were previously implicated in the accidental transmission of Creutzfeldt-Jakob disease (CJD) to two younger patients. The diagnoses of CJD have been confirmed for all three cases. More than two years after their last use in humans, after three cleanings and repeated sterilisation in ethanol and formaldehyde vapour, the electrodes were implanted in the cortex of a chimpanzee. Eighteen months later the animal became ill with CJD. This finding serves to re-emphasise the potential danger posed by reuse of instruments contaminated with the agents of spongiform encephalopathies, even after scrupulous attempts to clean them. 


Wednesday, July 28, 2021 

France issues moratorium on prion research after fatal brain disease strikes two lab workers

THURSDAY, FEBRUARY 15, 2018 

Iatrogenic Creutzfeldt-Jakob disease with Amyloid-β pathology: an international study

http://creutzfeldt-jakob-disease.blogspot.com/2018/02/iatrogenic-creutzfeldt-jakob-disease.html

Re-Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy 

Nature 525, 247?250 (10 September 2015) doi:10.1038/nature15369 Received 26 April 2015 Accepted 14 August 2015 Published online 09 September 2015 Updated online 11 September 2015 Erratum (October, 2015) 

snip...see full Singeltary Nature comment here; 

Alzheimer's disease

let's not forget the elephant in the room. curing Alzheimer's would be a great and wonderful thing, but for starters, why not start with the obvious, lets prove the cause or causes, and then start to stop that. think iatrogenic, friendly fire, or the pass it forward mode of transmission. think medical, surgical, dental, tissue, blood, related transmission. think transmissible spongiform encephalopathy aka tse prion disease aka mad cow type disease... 

Commentary: Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy





Self-Propagative Replication of Ab Oligomers Suggests Potential Transmissibility in Alzheimer Disease 

*** Singeltary comment PLoS *** 

Alzheimer’s disease and Transmissible Spongiform Encephalopathy prion disease, Iatrogenic, what if ? 

Posted by flounder on 05 Nov 2014 at 21:27 GMT 


The prion-like phenomenon in Alzheimer’s disease: Evidence of pathology transmission in humans

Ruben Gomez-Gutierrez,Rodrigo Morales 

Published: October 29, 2020


Citation: Gomez-Gutierrez R, Morales R (2020) The prion-like phenomenon in Alzheimer’s disease: Evidence of pathology transmission in humans. PLoS Pathog 16(10): e1009004. https://doi.org/10.1371/journal.ppat.1009004

Editor: Sabine Gilch, University of Calgary, CANADA

Published: October 29, 2020

Prion propagation: A common mechanism among neurodegenerative proteinopathies Most neurodegenerative diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and prion diseases, share common pathogenic features. These include the presence of misfolded protein deposits and progressive neuronal loss in specific areas of the brain. Notably, the misfolded proteins involved in these diseases (prions, amyloid-β (Aβ), tau, and α-synuclein) share common structural, biological, and biochemical features, as well as similar mechanisms of aggregation and self-propagation. The infectious prion protein (PrPSc) was the first disease-causing “proteinaceous infectious agent” ever described [1]. PrPSc has the ability to “transmit” its disease-associated conformation to normally folded prion proteins (PrPC). In turn, PrPSc can transfer its disease-causing information at different biological levels, including cell to cell, tissue to tissue, or between individuals. PrPSc particles associated with Creutzfeldt–Jakob disease (CJD) are able to transmit disease by different means, including corneal and dura transplants, implantation of electrodes, administration of cadaveric-derived human growth hormone (c-hGH), and blood transfusions [2].

Due to the striking similarities between PrPSc and other disease-associated protein aggregates, it is hypothesized that all of them have the ability to be transmissible. In the case of AD, Aβ and tau have shown to self-propagate both in vitro and in vivo, further supporting that pathological hallmarks of this disease can be transmitted. Remarkably, the growing evidence suggesting human iatrogenic transmission of Aβ pathology highlights the potential issue of interindividual transmission of AD-like neuropathology. In this manuscript, we discuss protein misfolding transmission mechanisms specifically focused on Aβ and the controversial hypothesis stating that some pathological features of AD might be transmissible.

snip...

Prion-like propagation of Aβ pathology

Aβ, the peptide forming extracellular aggregates in AD brains, was described to self-propagate its misfolded conformation in vitro decades ago [3]. Further studies in a variety of platforms supported this particular property. One of them involved the intracerebral administration of AD brain extracts to young marmosets that displayed robust Aβ pathology 6 to 7 years later [4]. Taking advantage of transgenic animals mimicking some aspects of familial and sporadic AD, similar outcomes were obtained in considerable shorter times [5]. The central role of pre-formed Aβ aggregates (seeds) as inducers of brain amyloidosis was confirmed by several experiments showing that Aβ-depleted brain homogenates were not able to propagate Aβ pathology in AD transgenic mice [6,7] and others showing that intracerebral injections of purified synthetic aggregates were able to accelerate AD pathology [8]. Importantly, prion-like propagation of Aβ seeds can also occur when they are administered in the peritoneal cavity [9] or the blood stream [10] but not by other peripheral routes [11]. All these experimental evidences (reviewed in [12]) warrant further research to assess whether these prion-like transmission events are limited to intraindividual spread or can occur between individuals.

Evidence of protein misfolding transmission in other neurodegenerative diseases

Prion transmission naturally occurs in different organisms besides mammals. These include yeast, fungus, bacteria, and plants. In these cases, prions are associated with adaptive functions for the host. This evidence suggests that prion transmission is a conserved mechanism across biological systems. Unfortunately, it seems that these events are in many cases associated with either disease progression or infection in the context of mammals (as observed in human and animal prion diseases).

Besides Aβ aggregates, many other disease-associated misfolded proteins have been experimentally shown to spread in a prion-like manner both in vitro and in vivo. Examples of these proteins are tau, α-synuclein, superoxide dismutase-1, serum amyloid-A (AA), and huntingtin. The misfolded version of some of these proteins have also been shown to propagate in a prion-like manner in humans. This is the case of α-synuclein, a hallmark protein involved in PD. In 2008, 2 independent studies demonstrated that different PD patients, who received transplantation of fetal mesencephalic dopaminergic neurons into the striatum, developed α-synuclein-positive Lewy bodies in the grafted neurons [13,14]. Similar findings have been documented in patients with HD that received fetal striatal transplants. In these cases, huntingtin protein aggregates were observed within the allografted neural tissue a decade after the transplants [15]. These observations shed light on the potential transmission of α-synucleinopathy and misfolded huntingtin in humans.

The previously mentioned evidence described prion-like transmission events occurring between cells and tissues but not bona fide interindividual infectious events as described for PrPSc. The strongest evidence for prion-like infection to occur between individuals, outside of prion diseases, is found for a systemic amyloidosis involving AA in captive cheetahs (Acinonyx jubatus). AA amyloidosis is a leading cause of death in this animal species, and several reports demonstrate that increased animal density enhance the incidence and severity of this disease, as well as decrease its age of onset. Zhang and colleagues demonstrated that feces from captive cheetahs contain AA fibrils carrying high seeding activity and thus potential for interindividual transmission. Consequently, feces from diseased animals are proposed to be a vehicle for disease transmission similar to how it has been described for some animal prionopathies [16].

Human-to-human transmission of Aβ amyloidosis

Despite the extensive evidence describing the prion-like properties of Aβ in animal models, evidence of this occurring in humans is controversial and have sparsely been reported (summarized in Table 1). One of the first studies that tackled the potential horizontal transmission of Aβ pathology in humans was reported by Irwin and colleagues [17]. In this study, the authors revised the National Hormone and Pituitary Program (NHPP) cohort database to assess whether c-hGH preparations containing disease-associated Aβ transmitted AD hallmark pathology to recipients in a similar fashion as described for CJD. Outcomes from this study failed to find any significant evidence of human-to-human transmission of Aβ misfolding. Later studies by Jaunmuktane and colleagues found evidence for the transmission of Aβ pathology in c-hGH recipients [18]. Here, researchers performed postmortem brain analyses of a subgroup of patients afflicted by c-hGH-induced CJD. They found that 4 of the 8 patients comprising this group had extensive parenchymal Aβ deposition, and 3 patients displayed widespread cerebral amyloid angiopathy (CAA). Two other patients also presented with focal cortical Aβ deposits. Further studies by Jaunmuktane and colleagues corroborated that AD-like neuropathology was indeed caused by c-hGH preparations contaminated with Aβ. Specifically, the authors demonstrated that original batches of c-hGH received by their cohort of iatrogenic Creutzfeldt–Jakob disease (iCJD) patients had substantial levels of Aβ, and these materials were able to induce both CAA and parenchymal Aβ plaques in transgenic mice after intracerebral inoculation [19]. These results, which are opposite to the findings by Irwin and colleagues [17], could be explained by the different incubation periods of both cohorts (mean of 16.3 years (first treatment to death) versus 33 years (first treatment to disease onset)), among other reasons.

Table 1. Summary of studies reporting potential amyloid pathology transmission in humans. https://doi.org/10.1371/journal.ppat.1009004.t001

Induction of parenchymal Aβ deposits and CAA in recipients of c-hGH who died from causes other than prion disease was also reported by other groups [20]. Fairly similar Aβ pathology with predominant CAA was also reported for individuals exposed to cadaveric dura mater either by dural graft or by tumor embolization with dural extracts [21–26]. Interestingly, early onset CAA pathology has been reported in patients that underwent neurosurgical procedures in their childhood, raising the possibility that CAA might be accidentally caused by contaminated surgical instruments [27] as observed for CJD. Regardless of these assumptions, extensive research in different settings is needed to establish or discard prion-like transmission events associated with non-PrPSc misfolded protein aggregates.

AD transmission risk and public health implications

As discussed above, several reports suggest that Aβ pathology may be iatrogenically transmitted between humans, albeit in restricted circumstances. It is important to note that the human brain specimens analyzed in these studies did not present the full spectrum of AD neuropathology. For example, tauopathy was minimal or absent in most samples analyzed and only 1 study, performed in a French cohort of patients treated with c-hGH, reported intraneuronal tau deposits in 3 individuals [28]. Notably, the c-hGH preparations analyzed in Purro and colleagues [19] contained measurable levels of tau, and future studies should determine whether tau in those vials have in vivo seeding capabilities. The method of preparation of c-hGH also seemed to be critical because only patients treated with samples following the Hartree-modified Wilhelmi protocol (HWP) developed Aβ pathology. Considering that most of the brains analyzed presented a pattern of Aβ deposition with strong vascular tropism, lacked neurofibrillary tangles, and did not present progressive cognitive impairment, it is suggested that brain amyloidosis affecting these individuals was different to AD. However, these disparities might also be (at least partially) attributed to prion disease that caused patients to die at relatively younger ages.

The novel concept suggesting that Aβ pathology is potentially transmissible in humans is relevant and warrants further research. However, it is worth mentioning that most of the cases described above underwent procedures that have not been used for decades. At this time, there is no evidence demonstrating that AD is contagious. In the same line, whether transmission of Aβ or tau misfolding lead to bone fide AD should be carefully investigated. However, potential procedures that might facilitate these events should be revised. For example, protocols to ensure the complete removal of misfolded proteins (seeds) from surgical instruments by nonstandard decontamination methods should be considered.

Acknowledgments

The authors would like to thank Dr. Thomas Eckland for critical review of this manuscript. We are aware of the lack of discussion of many relevant studies in this subject. We apologize for the many missing references that should also be quoted.

References

snip...


Friday, January 29, 2016

Synucleinopathies: Past, Present and Future, iatrogenic, what if?



Friday, February 4, 2022 

Different α-synuclein prion strains cause dementia with Lewy bodies and multiple system atrophy, iatrogenic transmission, what if?


TUESDAY, OCTOBER 6, 2020

Potential human transmission of amyloid β pathology: surveillance and risks

LANCET 

VOLUME 19, ISSUE 10, P872-878, OCTOBER 01, 2020 


TUESDAY, FEBRUARY 22, 2022 
Aged Cattle Brain Displays Alzheimer's Disease-Like Pathology and Promotes Brain Amyloidosis in a Transgenic Animal Model
vpspr, sgss, sffi, TSE, an iatrogenic by-product of gss, ffi, familial type prion disease, what if ???

Greetings Friends, Neighbors, and Colleagues,



Thursday, July 29, 2021 

TSE PRION OCCUPATIONAL EXPOSURE VIA ANIMAL OR HUMAN, iatrogenic transmission, nvCJD or sCJD, what if? 


Thursday, October 28, 2021 

Chronic Wasting Disease (CWD) TSE Prion Zoonosis, friendly fire, iatrogenic transmission, blood products, sporadic CJD, what if?


Thursday, June 3, 2021 

CWD TSE PRION ZOONOSIS TRANSMISSION TO HUMANS BY BLOOD TRANSFUSION, iatrogenic CJD, WHAT IF? 




MONDAY, DECEMBER 16, 2019 

Chronic Wasting Disease CWD TSE Prion aka mad cow type disease in cervid Zoonosis Update

***> ''In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids.'' Scientific opinion on chronic wasting disease (II) <***

What if?


FRIDAY, OCTOBER 1, 2021 

Bovine Spongiform Encephalopathy BSE TSE Prion Origin, USA, what if?


Friday, January 29, 2021 
Scientists identify locations of early prion protein deposition in retina, what if?
Saturday, February 2, 2019 

CWD GSS TSE PRION SPINAL CORD, Confucius Ponders, What if?

snip... 

 ***> In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids.'' Scientific opinion on chronic wasting disease (II) <*** 

REVIEW 

***> In conclusion, sensory symptoms and loss of reflexes in Gerstmann-Sträussler-Scheinker syndrome can be explained by neuropathological changes in the spinal cord. We conclude that the sensory symptoms and loss of lower limb reflexes in Gerstmann-Sträussler-Scheinker syndrome is due to pathology in the caudal spinal cord. <***

***> The clinical and pathological presentation in macaques was mostly atypical, with a strong emphasis on spinal cord pathology.<*** 

***> The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD. <***

***> All animals have variable signs of prion neuropathology in spinal cords and brains and by supersensitive IHC, reaction was detected in spinal cord segments of all animals.<*** 

***> In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids.'' Scientific opinion on chronic wasting disease (II) <***

Saturday, February 2, 2019 

CWD GSS TSE PRION SPINAL CORD, Confucius Ponders, What if?


Thursday, March 8, 2018 

Familial human prion diseases associated with prion protein mutations Y226X and G131V are transmissible to transgenic mice expressing human prion protein


Transmission of Creutzfeldt-Jakob Disease from Blood and Urine Into Mice


The Lancet, November 9, 1985


Sir,--Professor Manuelidis and his colleagues (Oct 19, p896) report transmission to animals of Creutzfeldt-Jakob disease (CJD) from the buffy coat from two patients. We also transmitted the disease from whole blood samples of a patient (and of mice) infected with CJD.1 Brain, Cornea, and urine from this patient were also infectious, and the clinicopathological findings2 are summarized as follows.


A 70-year-old man was noted to have a slowing of speech and writing and some disorientation, all of which progressed rapidly. Decorticate rigidity, forced grasping, positive snout reflex, and myoclonus appeared within 2 months. Electroencephalogram revealed typical periodic synchronous discharge, and he died of pneumonia and upper gastrointestinal haemorrage, about 3 months after onset of the symptoms. The Brain weighed 1290g and showed severe histological changes diagnostic of CJD, including spongiform change, loss of nerve cells, and diffuse proliferation of astrocytes. There were no inflammatory cells, microglia, neurofibrillary tangles, and amyloid plaques, although virus-like particles were detected by electron microscopy.


Results of innoculation in Mice


Inocula NO* Incubation period (days)+


Brain 7/10 (4) 789 (+ or - 112)


Cornea 1/6 (0) 1037


Blood 2/13 (0) 1080 (+ or - 69)


Urine 5/10 (1) 880 (+ or - 55)


CSF 0/10


* Number of mice with CJD change/number examined histologically.


Number with amyloid plaques shown in parentheses.


+ means + or - SD


Samples were taken aseptically at necropsy. 10% crude homogenates of brain and cornea in saline, whole blood (after crushing a clot), and untreated CSF and urine were inoculated intracerebrally into CF1 strain mice (20 ul per animal). Some mice showed emaciation, bradykinesia, rigidity of the body and tail, and sometimes tremor after long incubation periods. Tissues obtained after the animal died (or was killed) were studied histologically (table). Animals infected by various inocula showed common pathological changes, consisting of severe spongiform changes, glial proliferation, and a moderate loss of nerve cells. A few mice inoculated with brain tissue or urine had the same amyloid plaques found in patients and animals with CJD.3


In our long-term experiments, inoculating materials taken from twenty patients with CJD or Gerstmann-Straussler-Scheinker's disease (GSS) into rodents, positive results were obtained in seventeen cases, including this patient. Brain tissue transmitted the disease most frequently within the shortest incubation period, except for one case where the lymph node was the most infectious.


Transmission through the cornea has been noted in man4 and in guineapigs.5 Whole blood samples taken from three patients were inoculated and a positive transmission occurred only in the case recorded here. Mouse-to-mouse transmission through blood inoculation was successful after a mean incubation period of 365 days.1 Transmission through urine was positive in this patient only, and negative in one other patient and in many infected animals. Transmission through the CSF from eight patients was negative, yet transmission via the CSF of infected rats was positive.1


As viraemia has been proved in guineapigs,6 mice,1,7 and lately in patients with CJD, blood for transfusion or blood products for medical use must be tested for unconventional pathogens. For this purpose, we inoculated blood products into rodents.8 The CJD pathogen was not found in the products examined. However, this approach takes too long to be of practical value. More efficient methods must be developed to detect pathogens and to eliminate them from blood. One proposal9 is to apply membrane filtration to the purification protocol of human growth hormone suspected of being contaminated with CJD. Similar methods are needed for blood contamination.


Department of Neuropathology, Neurological Institute, Faculty of Medicine, Kyushu University,


Fukuoka812, Japan


JUN TATEISHI


1. Tateishi J, Sato Y, Kaga M. Doi H, Ohta M. Experimental transmission of human subacute spongiform encephalopathy to small rodents 1: Clinical and histological observations. Acta Neuropathol (Berl) 1980; 51: 127.


2. Shibayama Y, Sakaguchi Y, Nakata K, et al, Creutzfeldt-Jakob disease with demonstration of virus-like particles. Acta pathol Jpn 1982;32: 695.


3. Tateishi J, Nagara H, Hikita K, Sato Y. Amyloid plaques in the brains of mice with Creutzfeldt-Jakob disease. Ann Neurol 1984; 15: 278.


4. Duffy P, Wolf J, Colings G, DeVoe AG, Streeten B, Cowen D. Possible person-to-person transmission of Creutzfeldt-Jakob disease. N Engl J Med 1974; 290: 692.


5. Manuelidis EE, Angelo JN, Gorgacz EJ, Kim JH, Manuelidis L. Experimental Creutzfeldt-Jakob disease transmitted via the eye with infected cornea. N Engl J Med 1977; 296: 1334.


6. Manuelidis EE, Gorgacz EJ, Manuelidis L. Viremia in experimental Creutzfeldt-Jakob disease. Science 1978: 200: 1069.


7. Kuroda Y, Gibbs CJ Jr, Amyx HL, Gajdusek DC. Creutzfeldt-Jakob disease in mice. Persistent viremiam and preferential replication of virus in low-density lymphocytes. Infect Immun 1983; 41: 154.


8. Tateishi J, Tsuji S. Unconventional pathogens causing spongiform encephalopathis absent in blood products. J Med Virol 1985; 15: 11.


9. Tateishi J, Kitamoto T, Hiratani H. Creutzfeldt-Jakob disease pathogen in growth hormone preparations is eliminatable.


Lancet (in press).


========================================================


also, this from the Her Majesty's Government...TSS


Subject: Transmission of TSEs through blood


Date: Tue, 28 Mar 2000 14:48:35 +0100


From: Ralph Lucas


Reply-To: Bovine Spongiform Encephalopathy


To: BSE-L@uni-karlsruhe.de


######### Bovine Spongiform Encephalopathy #########


The Lord Lucas asked Her Majesty's Government:


Whether there is any evidence that any Transmissible Spongiform


Encephalopathy in any species can be transmitted through blood; and whether they will place in the Library of the House copies of the principal relevant scientific papers. (HL1545)


The Parliamentary Under-Secretary of State, Department of Health (Lord Hunt of Kings Heath):


Some animal studies have shown that certain transmissible spongiform encephalopathies can be experimentally transmitted from animal to animal through blood components. However, the Spongiform Encephalopathy Advisory Committee at its February meeting reviewed recent research undertaken in this area and did not consider any measures were necessary, in addition to those already in place, to reduce any potential risk to public health from human blood and blood products.


Copies of the following relevant scientific papers are being placed in the Library.


Brown P, 1995, "Can Creutzfeldt-Jakob Disease be transmitted by Transfusion?" Haematology 2: 472 - 477.


Brown et al 1999, Further studies of blood infectivity in an experimental model of transmissible spongiform encephalopathy, with an explanation of why blood components do not transmit Creutzfeldt - Jakob disease in humans.


Transfusion Vol. 39, November/December 1169 - 1178.


http://www.whale.to/v/singeltary4.html


https://bseinquiry.blogspot.com/2018/06/vaccines-tse-prion-risk-factors.html


From: Terry S. Singeltary Sr. (216-119-130-147.ipset10.wt.net)


Subject: Transmission of BSE by blood transfusion in sheep...


Date: September 15, 2000 at 9:29 am PST


Subject: Transmission of BSE by blood transfusion in sheep...


Date: Thu, 14 Sep 2000 18:19:06 -0700


From: "Terry S. Singeltary Sr."


Reply-To: Bovine Spongiform Encephalopathy


To: BSE-L@uni-karlsruhe.de


######### Bovine Spongiform Encephalopathy #########


Greetings List Members,


More Dreadful news, but predictable...


kind regards,


Terry S. Singeltary Sr., Bacliff, Texas USA


===========================================


It is possible to transmit BSE to a sheep by transfusion with whole blood taken from another sheep during the symptom-free phase of an experimental BSE infection.


It is well known that variant Creutzfeldt-Jakob disease (vCJD) is caused by the same strain of agent that causes bovine spongiform encephalopathy (BSE) in cattle. F Houston and colleagues report the preliminary findings of transfusing blood from 19 UK Cheviot sheep fed with 5 g BSE-affected cattle brain into Cheviot sheep from scrapie-free flock of New Zealand-derived animals. The investigators found BSE clinical signs and pathology in one recipient of blood taken from a BSE infected animal. Immunocytochemistry on tissues taken from the transfused sheep showed widespread PrPSC deposition throughout the brain and the periphery. This finding suggests that blood donated by symptom-free vCJD-infected human beings could transmit infection to recipients of blood transfusions. In a Commentary, Paul Brown states that these observations are consistent with previous reports in experimentally infected rodents.


==================


Research letters


Volume 356, Number 9234 16 September 2000


Transmission of BSE by blood transfusion in sheep


Lancet 2000; 356: 999 - 1000


Download PDF (1 Mb)


F Houston, J D Foster, Angela Chong, N Hunter, C J Bostock


See Commentary


We have shown that it is possible to transmit bovine spongiform encephalopathy (BSE) to a sheep by transfusion with whole blood taken from another sheep during the symptom-free phase of an experimental BSE infection. BSE and variant Creutzfeldt-Jakob disease (vCJD) in human beings are caused by the same infectious agent, and the sheep-BSE experimental model has a similar pathogenesis to that of human vCJD. Although UK blood transfusions are leucodepleted--a possible protective measure against any risk from blood transmission--this report suggests that blood donated by symptom-free vCJD-infected human beings may represent a risk of spread of vCJD infection among the human population of the UK.


The demonstration that the new variant of Creutzfeldt-Jakob disease (vCJD) is caused by the same agent that causes bovine spongiform encephalopathy (BSE) in cattle1 has raised concerns that blood from human beings in the symptom-free stages of vCJD could transmit infection to recipients of blood transfusions. There is no evidence that iatrogenic CJD has ever occurred as a result of the use of blood or blood products, but vCJD has a different pathogenesis and could present different risks. CJD is one of the transmissible spongiform encephalopathies (TSEs) characterized by the deposition of an abnormal form of a host protein, PrPSc; the normal isoform (PrPC) is expressed in many body tissues.


Available evidence, based on detection of infectivity in blood in rodent models, and absence of infectivity in naturally occurring TSEs, adds to the uncertainty in risk assessments of the safety of human blood. PrPSc has been reported in blood taken from preclinical TSE-infected sheep,2 but it does not follow that blood is infectious.


Bioassays of human blood can only be carried out in non-human species, limiting the sensitivity of the test. One way of avoiding such a species barrier is to transfer blood by transfusion in an appropriate animal TSE model. BSE-infected sheep harbour infection in peripheral tissues3 and are thus similar to humans infected with vCJD.4 BSE infectivity in cattle does not have widespread tissue distribution.


We report preliminary data from a study involving blood taken from UK Cheviot sheep challenged orally with 5 g BSE-affected cattle brain and transfused into Cheviot sheep from a scrapie-free flock of New Zealand-derived animals (MAFF/SF flock). MAFF/SF sheep do not develop spontaneous TSE and the transfused animals are housed separately from other sheep. All sheep in the study have the PrP genotype AA136QQ171 which has the shortest incubation period of experimental BSE in sheep.5 19 transfusions from BSE-challenged sheep have been done, mostly with whole blood. Sheep have complex blood groups and only simple cross-matching can be done by mixing recipient serum and donor erythrocytes and vice versa.


Therefore single transfusions only were made between sedated cross-matched animals to minimize the risk of severe reactions. Negative controls were MAFF/SF sheep transfused with blood from uninfected UK Cheviot sheep. As a positive control, MAFF/SF sheep were intravenously injected with homogenised BSE-affected cattle brain.


We have seen BSE clinical signs and pathological changes in one recipient of blood from a BSE-infected animal, and we regard this finding as sufficiently important to report now rather than after the study is completed, several years hence. The blood donation resulting in transmission of BSE to the recipient was 400 mL of whole blood taken from a healthy sheep 318 days after oral challenge with BSE. BSE subsequently developed in this donor animal 629 days after challenge, indicating that blood was taken roughly half way through the incubation period. 610 days after transfusion, the transfused sheep (D505) itself developed typical TSE signs: weight loss, moderate pruritus, trembling and licking of the lips, hind-limb ataxia, and proprioceptive abnormalities. This is the first experimental transmission of BSE from sheep to sheep and so we have nothing with which to compare this incubation period directly. In cross-species transmissions, bovine BSE injected intracerebrally gives incubation periods of about 450 days in these sheep,5 and the donor animal had an oral BSE incubation period of 629 days (see above). There are no similar data available on other infection routes.


Immunocytochemistry with the antibody BG4 on tissues taken from sheep D505 showed widespread PrPSc deposition throughout the brain and periphery. Western blot analysis of brain tissue with the antibody 6H4 showed that the PrPSc protein had a glycoform pattern similar to that of experimental BSE in sheep and unlike that of UK natural scrapie (figure), indicating that the TSE signs resulted from transmission of the BSE agent. All other recipients of transfusions and positive and negative controls are alive and healthy. The positive controls, which involve a species barrier, are expected to have lengthy incubation periods. With one exception, all transfused animals are at earlier stages post-transfusion than was D505. The exception is a sheep which is healthy 635 days after transfusion with BSE-blood donated at less than 30% of the BSE incubation period of the donor sheep.


PrPSc (proteinase K treated) analyzed by SDS-PAGE, immunoblotted with 6H4, and visualized with a chemiluminescent substrate


All lanes are from the same gel with different exposure times. Size markers are to the left of lane 1. Lane1: natural scrapie sheep brain, 3 min exposure. Lane 2: as lane 1, 10 min exposure. Lane 3: sheep D505, blood-transfusion recipient, 10 min exposure. Lane 4: experimental BSE-affected sheep brain, 30 s exposure. Lane 5: as lane 4, 10 min exposure. Each lane loaded with amount of protein extracted from 0·1 g wet weight of brain, except lane 3 which was extracted from 0·2 g brain.


Although this result was in only one animal, it indicates that BSE can be transmitted between individuals of the same species by whole-blood transfusion. We have no data on blood fractions or on levels of infectivity in blood of preclinical vCJD cases, but whole blood is not now used in UK transfusions. The presence of BSE infectivity in sheep blood at an early stage in the incubation period suggests that it should be possible to identify which cells are infected, to test the effectiveness of leucodepletion, and to develop a diagnostic test based on a blood sample.


We thank Karen Brown, Moira Bruce, Calum McKenzie, David Parnham, Diane Ritchie, and the Scottish Blood Transfusion Service. 


The project is funded by the Department of Health.


1 Bruce ME, Will RG, Ironside JW, et al. Transmissions to mice indicate that 'new variant' CJD is caused by the BSE agent. Nature 1997; 389: 488-501 [PubMed].


2 Schmerr MJ, Jenny A, Cutlip RC. Use of capillary sodium dodecyl sulfate gel electrophoresis to detect the prion protein extracted from scrapie-infected sheep. J Chromatogr B Biomed Appl 1997; 697: 223-29 [PubMed].


3 Foster JD, Bruce M, McConnell I, Chree A, Fraser H. Detection of BSE infectivity in brain and spleen of experimentally infected sheep. Vet Rec 1996; 138: 546-48 [PubMed].


4 Hill AF, Zeidler M, Ironside J, Collinge J. Diagnosis of new variant Creutzfeldt-Jakob disease by tonsil biopsy. Lancet 1997; 349: 99-100.


5 Goldmann W, Hunter N, Smith G, Foster J, Hope J. PrP genotype and agent effects in scrapie: change in allelic interaction with different isolates of agent in sheep, a natural host of scrapie. J Gen Virol 1994; 75: 989-95 [PubMed].


Institute for Animal Health, Compton, Newbury, UK (F Houston PhD, CJ Bostock PhD); and Institute for Animal Health, Neuropathogenesis Unit, Edinburgh, EH9 3JF, UK (N Hunter PhD, JD Foster BSc, Angela Chong BSc)


Correspondence to: Dr N Hunter


=======================


Commentary


Volume 356, Number 9234 16 September 2000


BSE and transmission through blood


Lancet 2000; 356: 955 - 956


Download PDF (55 Kb)


Wether the outbreak of variant Creutzfeldt-Jakob disease (vCJD) in the UK will ultimately affect hundreds, or tens of thousands of people, cannot yet be predicted.1 If large numbers of apparently healthy people are now silently incubating infections with bovine spongiform encephalopathy (BSE), the implications for public health include the possibility that blood from such individuals may be infectious. Established facts about infectivity in the blood of human beings and animals with transmissible spongiform encephalopathies (TSEs) are as follows:2-4


Blood, especially the buffy-coat component, from animals experimentally infected with scrapie or CJD and from either a clinical or preclinical incubation phase, is consistently infectious when bioassayed by intracerebral or intraperitoneal inoculation into the same species;


In naturally infected animals (sheep and goats with scrapie, mink with transmissible mink encephalopathy, and cows with BSE), all attempts to transmit disease through the inoculation of blood have failed;


Blood from four of 37 human beings with clinically evident sporadic CJD has been reported to transmit the disease after intracerebral inoculation into guineapigs, mice, or hamsters. But each success has been questioned on technical grounds and has not been reproducible; and


Epidemiological data have not revealed a single case of CJD that could be attributed to the administration of blood or blood products among patients with CJD, or among patients with haemophilia and other congenital clotting or immune deficiencies who receive repeated doses of plasma concentrates.


No comparable information about vCJD is available. However, since lymphoreticular organs, such as tonsils have been shown to contain the prion protein (which is an excellent index of infectivity), whereas it is not detectable in patients with sporadic CJD, there is some reason to worry that blood from individuals incubating vCJD might be infectious.5 Data from studies into the ability of blood from experimentally infected rodents and primates with vCJD to transmit the disease will not be available for months or years.


In this issue of The Lancet, F Houston and co-workers report convincing evidence that blood from a seemingly healthy sheep incubating BSE (infected by the oral route with brain from a diseased cow) was able to cause the disease when transfused into another sheep. This observation is entirely consistent with past experience in experimentally infected rodents. It extends current knowledge about blood infectivity in experimental models to a host/TSE strain pair that is closer to the human vCJD situation than the earlier rodent studies. It is also the first successful transfusion of BSE from blood taken during the all-important incubation period of infection. This result is part of a larger study (n=19) that includes both positive and negative control animals, all still healthy and in various early stages of the incubation period.


Is it appropriate to publish an experimental result from a single animal in a study that is not far enough along even to have validated its positive controls? Especially a result that does not in any fundamental way change our current thinking about BSE and vCJD and which would not seem to have any practical consequences for public health? The UK National Blood Transfusion Service has already implemented leucodepletion of donated blood, and imports all plasma and plasma derivatives from BSE-free countries. No further measures would seem possible--short of a draconian decision to shut down the whole UK blood-donor system. What, therefore, is the rationale for this publishing urgency? The answer, evidently, is a perceived need to "defuse", by an immediate and accurate scientific report, public reaction to possibly inaccurate media accounts. The full study, when it appears, will be an important addition to our knowledge of TSEs, but science should not be driven to what in certain medical quarters might be termed a premature emission through fear of media misrepresentation.


Paul Brown


Laboratory of Central Nervous System Studies, National Institutes of Health, Bethesda, MD 20892, USA


1 Ghani AC, Ferguson NM, Donnelly CA, Anderson RM. Predicted vCJD mortality in Great Britain. Nature 2000; 406: 583-84 [PubMed].


2 Brown P. Can Creutzfeldt-Jakob disease be transmitted by transfusion? Curr Opin Hematol 1995; 2: 472-77 [PubMed].


3 Brown P, Cervenáková L, McShane LM, Barber P, Rubenstein R, Drohan WN. Further studies of blood infectivity in an experimental model of transmissible spongiform encephalopathy, with an explanation of why blood components do not transmit Creutzfeldt-Jakob disease in humans. Transfusion 1999; 39: 1169-78 [PubMed].


4 Rohwer RG. Titer, distribution, and transmissibility of blood-borne TSE infectivity. Presented at Cambridge Healthtech Institute 6th Annual Meeting "Blood Product Safety: TSE, Perception versus Reality", MacLean, VA, USA, Feb 13-15, 2000.


5 Hill AF, Butterworth RJ, Joiner S, et al. Investigation of variant Creutzfeldt-Jakob disease and other human prion diseases with tonsil biopsy samples. Lancet 1999; 353: 183-89.


http://www.thelancet.com/


===================


TSS


http://www.whale.to/v/singeltary3.html


From: Terry S. Singeltary Sr. (216-119-138-155.ipset18.wt.net)


Subject: CJD/VACCINES/CHILDREN -- could the "V" in vCJD mean vaccine???


Date: September 5, 2000 at 1:17 pm PST


Hello Voice,


could the "V" in vCJD mean vaccine, instead of variant???


kind regards,


Terry S. Singeltary Sr.


######### Bovine Spongiform Encephalopathy #########


Greetings list members,


this document is very disturbing, considering if they continued to use these vaccines, the U.K. could loose a generation of children. If they continue to force these vaccines on children, they could loose more than just one generation, looking at the inventory. I did not know, that a Government body or bodies, if you include the United States, could be so stupid to this disease, with the evidence they have to date. It's as blatant and negligent as you can get. You may think the BSE Inquiry is almost over, but that was only the beginning.


The Truth Will Come...


(just hope i'm alive to see it)


kind regards,


Terry S. Singeltary Sr., Bacliff, Texas USA


============================================


BSE3/1 0250


Dr Harris (MED)


From: Dr Adams (MB3B)


cc - Dr. Pickles


Date: 14 February 1989


BOVINE SPONGIFORM ENCEPHALOPATHY


This minute details the information received on human vaccines in response to telephone enquires, and details of forthcoming expert group meetings during February 1989.


Vaccines


We have contacted all the major vaccine product licence holders whose products are likely to be used in children. Many manufacturers use bovine material. As can be seen, this information is diverse and incomplete. Each company stressed that they could not give an accurate assessment without detailed researches, given the complexity of sourcing/purchasing arrangements.


All the licences are detailed in appendix 1; the overview is as follows;


1. XXXXXXXXXXX have polio, measles, mumps, rubella, rotavirus vaccines. AlL use bovine serum from a UK source and bovine commercial product from unknown source. Some agent comes from the USA and New Zealand.


2. XXXXXXXXXXX (see Appendix 2). All their vaccines apart from yellow fever, cholera and typhoid contain bovine material:


--Oral polio; up to 1988, foetal calf serum was used from UK and New


Zealand (pooled); since 1988 foetal calf serum only from New Zealand. Large stocks are held.


--Rubella; bulk was made before 1979 from foetal calf serum from UK and New Zealand. None has been made as there are some 15 years stock.


--Diphtheria; UK bovine beef muscle and ox heart is used but since the end of 1988 this has been sourced from Eire. There are 1,250 litres of stock.


--Tetanus; this involves bovine material from the UK mainly Scottish. There are 21,000 litres of stock.


--Pertussis; uses bovine material from the UK. There are 63,000 litres of stock.


--They consider that to switch to a non-UK source will take a minimum of 6-18 months and to switch to a non-bovine source will take a minimum of five years.


3. XXXXXXXXXXX have measles, mumps, MMR, rubella vaccines. These are sourced from the USA and the company believes that US material only is used.


89/2.14/2.1


============


BSE3/1 0251


4. XXXXXXXXXXX have a measles vaccine using bovine serum from the UK. there are 440,000 units of stock.


--They have also got MMR using bovine serum from the UK.


5. XXXXXXXXXXX have influenza, rubella, measles, MMR vaccines likely to be used in children. Of those they think that only MMR contains bovine material which is probably a French origin.


6. XXXXXXXXXXX have diphtheria/tetanus and potasses on clinical trial. These use veal material, some of which has come from the UK and has been made by XXXXXXXXXXX (see above).


7. XXXXXXXXXXX have influenza vaccines which are made up in egg medium.


8. XXXXXXXXXXX The Secretary of State has a number of licences. We understand that the inactivated polio vaccine is no longer being used. There is a stock of smallpox vaccine. We have not been able to determine the source material. (Made in sheep very unlikely to certain bovine ingredients).


9. XXXXXXXXXXX have acellular triple vaccine in which material of UK bovine source has been used.


As far as I can see, XXXXXXXXXXX are the sole supplier of pertussis vaccine which uses bovine casein digest.


You should also be aware that DH has made arrangements for meningococal vaccine to be available, on a named patient basis, from XXXXXXXXXXX and XXXXXXXXXXX. Both companies use bovine media in production.


Expert Group Meetings


The Veterinary Products Committee will discuss the proposed draft guidelines and significance thereof to veterinary vaccine products at 2.00pm on Thursday 16 February 1989 with professor Armo in the Chair. (See appendix for VPC Committee constitution).


The Human & Veterinary Medicines Working Group re BSE will meet on 22 February at 10.00am Market Towers. The meeting will be to provide expert information to CSM on the 23 February in the light of the Southwood report and concerns about vaccines. In addition to Department of Health and MAFF officials, Professor Collee, Dr Schild, Dr Minor, Dr Tyrell from the Biologicals Subcommittee will be present, Dr Kimberlin and Dr Martin and Mr Wilesmith have been invited. Professor Collee will be in the Chair.


The Committee on Safety of Medicines will meet on the 23 February. They will consider advice from the working group, draft guidelines for the industry, a draft letter to product licence holders of human medicines, and recommendations regarding priority actions on particular product groups.


MAFF briefing note is added at Appendix 6.


DR P N ADAMS


89/2.14/


=========


TSS


############ http://mailhost.rz.uni-karlsruhe.de/warc/bse-l.html ############


===============================================================


don't think it is not possible, just take a look here, are some fine examples of transmission of TSE's via VACCINES...TSS


===============================================================


The large number of cases (1040), temporal clustering of the outbreaks (15 in the first 6 months of 1997), the high in-flock incidence, and the exceptional involvement of goats (390 cases), suggested an accidental infection. The source of the epidemic might have been TSE-contaminated meat and bonemeal, but eight flocks had never been fed any commercial feedstuff. Infection might have risen from the use of a formol- inactivated vaccine against contagious agalactia prepared by a single laboratory with brain and mammary gland homogenates of sheep infected with Mycoplasma agalactiae. Although clinical signs of TSE in the donor sheep have not been found, it is possible that one or more of them were harbouring the infectious agent. Between 1995 and 1996, this vaccine was given subcutaneously to 15 of the affected flocks (to one flock in 1994); in these animals the disease appeared between 23 and 35 months after vaccination. No information is available for herd 13 because it was made up of stolen animals. Sheep from the remaining three flocks (1-3, figure) did not receive the vaccine, thus suggesting a naturally occurring disease.


http://www.thelancet.com/newlancet/sub/issues/vol353no9152/body.research560_2.html 


====================================================================


1: Dev Biol Stand 1996;88:237-41


Transmissible encephalopathies and biopharmaceutical production.


Robinson MM


USDA-ARS Animal Disease Research Unit, Washington State University, Pullman, USA.


The use of post-mortem tissues as sources for the production of biologicals, vaccines and feedstuffs has led to the transmission or generation of transmissible encephalopathies in some recipients. For example, the use of pituitary-derived human growth hormone and gonadotropins has resulted in the transmission of Creutzfeldt-Jakob disease to other humans [1], the use of formalin-inactivated sheep brain as a source for louping ill vaccine led to the transmission of scrapie to over 1,000 sheep from one vaccine lot [2], and the use of rendered products from ruminant carcasses in the domestic animal food chain led to the emergence and epizootic of bovine spongifrom encephalopathy in the United Kingdom [3]. Infection with transmissible encephalopathies by iatrogenic or other mechanisms is difficult to predict or control. The characteristics of these pathogens do not permit easy detection, clearance, or inactivation in routine biopharmaceutical production environments.


Publication Types: Review Review, tutorial


PMID: 9119144, UI: 97169782


http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9119144&dopt=Abstract


http://www.whale.to/v/singeltary2.html


From: TSS (216-119-138-163.ipset18.wt.net)
Subject: Louping-ill vaccine documents from November 23rd, 1946
Date: September 10, 2000 at 8:57 am PST

Subject: Louping-ill vaccine documents from November 23rd, 1946
Date: Sat, 9 Sep 2000 17:44:57 -0700
From: "Terry S. Singeltary Sr."
Reply-To: Bovine Spongiform Encephalopathy
To: BSE-L@uni-karlsruhe.de


at some point, i became concerned with vaccines, when i became aware of the iatrogenic threats, and that the inoculation mode route of transmission, would be one of the most efficient way to transmit disease, more so than oral consumption. i become very concerned with live vaccines, there were not many that i could find, but there was one that i was very concerned about, if my mind don't fail me now, it was a live rabies vaccine, and only used mainly in at the time, third world countries, but this is where my concern came about was the fact it was a live vaccine, made from sheep brains, and i had gotten my hands on an on several reports of an outbreaks of scrapie in flocks that had used a vaccine made up from sheep brains. one was the Louping-vaccine for sheep, a great many of these sheep went down with Scrapie after using this Louping-ill vaccine made up from sheep brains. funny thing, my old friend and scientist, the late Dr. Joe C. Gibbs and someone from England, both sent me that old study, and Dr. Gibbs told me then, about one of my rants about the ever elusive spontaneous sporadic cjd, that just comes from nothing, 85%+ of all cases, a happen stance of bad luck, well, i will not say what he told me, but he did not think sporadic cjd was so spontaneous as other folks seem to think it is...


Subject: Louping-ill vaccine documents from November 23rd, 1946 Date: Sat, 9 Sep 2000 17:44:57 -0700 From: "Terry S. Singeltary Sr." Reply-To: Bovine Spongiform Encephalopathy To: BSE-L@uni-karlsruhe.de


######### Bovine Spongiform Encephalopathy #########


THE VETERINARY RECORD 516 No 47. Vol. 58 November 23rd, 1946


NATIONAL VETERINARY MEDICAL ASSOCIATION OF GREAT BRITAIN AND IRELAND


ANNUAL CONGRESS, 1946


The annual Congress, 1946, was held at the Royal Veterinary College, Royal College Street, London, N.W.I. from September 22nd to September 27th.


Opening Meeting


[skip to scrapie vaccine issue...tss]


Papers Presented to Congress


The papers presented to this year's Congress had as their general theme the progressive work of the profession during the war years. Their appeal was clearly demonstrated by the large and remarkably uniform attendance in the Grand Hall of the Royal Veterinary College throughout the series; between 200 and 250 members were present and they showed a keen interest in every paper, which was reflected in the expression of some disappointment that the time available for discussion did not permit of the participation of more than a small proportion of would-be contributors.


In this issue we publish (below) the first to be read and discussed, that by Dr. W. S. Gordon, M.R.C.V.S., F.R.S.E., "Advances in Veterinary Research." Next week's issue will contain the paper on "Some Recent Advances in Veterinary Medicine and Surgery in Large-Animal Practice" by Mr. T. Norman Gold, M.R.C.V.S. In succeeding numbers of the Record will be reproduced, also with reports of discussions, that by Mr. W. L. Weipers, M.R.C.V.S., D.V.S.M., on the same subject as relating to small-animal practice, and the papers by Mr. J. N. Ritchie, B.SC., M.R.C.V.S., D.V.S.M., and Mr. H.W. Steele-Bodger, M.R.C.V.S., on "War-time Achievements of the British Home Veterinary Services."


The first scientific paper of Congress was read by Dr. W. S. Gordon, M.R.C.V.S., F.R.S.E. on Monday, September 23rd, 1946, when Professor J. Basil Buxton, M.A., F.R.C.V.S, D.V.H., Prinicipal of the Royal Veterinary College, presided.


Advances in Veterinary Research


by


W.S. GORDON, PH.D., M.R.C.V.S., F.R.S.E.


Agriculteral Research Council, Field Station, Compton, Berks.


Louping-ill, Tick-borne Fever and Scrapie


In 1930 Pool, Browniee & Wilson recorded that louping-ill was a transmissible disease. Greig et al, (1931) showed that the infective agent was a filter-passing virus with neurotropic characters and Browniee & Wilson (1932) that the essential pathology was that of an encephalomyelitis. Gordon, Browniee, Wilson & MacLeod (1932) and MacLeod & Gordon (1932) confirmed and extended this work. It was shown that on louping-ill farms the virus was present in the blood of many sheep which did not show clinical symptoms indicating involvement of the central nervous system and that for the perpetuation and spread of the disease these subclinical cases were probably of greater importance that the frank clinical cases because, in Nature, the disease was spread by the tick, lxodes ricinus L. More recently Wilson (1945, 1946) has described the cultivation of the virus in a chick embryo medium, the pathogenic properties of this culture virus and the preparation of louping-ill antiserum.


Between 1931 and 1934 I carried out experiments which resulted in the development of an effective vaccine for the prevention of louping-ill.* This vaccine has been in general use since 1935 and in his annual report to the Animal Diseases Research Association this year, Dr. Greig stated that about 227,000 doses of vaccine had been issued from Moredun alone.


Dr. Gordon illustrated this portion of his paper by means of graphs and diagrams projected by the epidiascope.


This investigation, however, did not begin and end with the study of louping-ill; it had, by good fortune, a more romantic turn and less fortunately a final dramatic twist which led almost to catastrophe. After it had been established that a solid immunity to louping-ill could be induced in sheep, a group of immunized and a group of susceptible animals were placed together on the tick-infected pasture of a louping-ill farm. Each day all the animals were gathered and their temperatures were recorded. It was anticipated that febrile reactions with some fatalities would develop in the controls while the louping-ill immunes would remain normal. Contrary to expectation, however, every sheep, both immune and control, developed a febrile reaction. This unexpected result made necessary further investigation which showed that the febrile reaction in the louping-ill immunes was due to a hitherto undescribed infective agent, a Rickettsia-like organism which could be observed in the cytoplasm of the grannular leucocytes, especially the neutrophil polymorphs (MacLeod (1932), Gordon, Browniee, Wilson & MacLeod. MacLeod & Gordon (1933). MacLeod (1936). MacLeod collected ticks over many widely separated parts of Scotland and all were found to harbour the infective agent of tick-borne fever, and it is probable that all sheep on tick-infested farms develop this disease, at least on the first occasion that they become infested with ticks. When the infection is passed in series through susceptible adult sheep it causes a sever, febrile reaction, dullness and loss of bodily condition but it rarely, if ever, proves fatal. It is clear, however, that it aggravates the harmful effects of a louping-ill infection and it is a serious additional complication to such infections as pyaemia and the anacrobic infections which beset lambs on the hill farms of Northern Britain.


Studying the epidemiology of louping-ill on hill farms it became obvious that the pyaemic condition of lambs described by M'Fadyean (1894) was very prevalent on tick infested farms Pyaemia is a crippling condition of lambs associated with tick-bite and is often confused with louping-ill. It is caused by infection with Staphylococcus aureus and affected animals may show abscess formation on the skin, in the joints, viscera, meninges and elsewhere in the body. It was thought that tick-borne fever might have ben a predisposing factor in this disease and unsuccessful attempts were made by Taylor, Holman & Gordon (1941) to reproduce the condition by infecting lambs subcutaneously with the staphylococcus and concurrently producing infections with tickborne fever and louping-ill in the same lambs. Work on pyaemia was then continued by McDiarmid (1946a, 1946b, 1946c), who succeeded in reproducing a pyaemic disease in mice, guinea-pigs and lambs similar to the naturally occurring condition by intravenous inoculation of Staphylococcus aureus. He also found a bacteraemic form of the disease in which no gross pyaemic lesions were observed. The prevention or treatment of this condition presents a formidable problem. It is unlikely that staphylococcal ???oid will provide an effective immunity and even if penicillin proved to be a successful treatment, the difficulty of applying it in adequate and sustained dosage to young lambs on hill farms would be almost insurmountable.


>From 1931 to 1934 field trials to test the immunizing value and harmlessness of the loup-ill vaccine were carried out on a gradually increasing scale. Many thousands of sheep were vaccinated and similar numbers, living under identical conditions were left as controls. The end result showed that an average mortability of about 9 percent in the controls was reduced to less than 1 percent in the vaccinated animals. While the efficiency of the vaccine was obvious after the second year of work, previous bitter experience had shown the wisdom of withholding a biological product from widespread use until it had been successfully produced in bulk, as opposed to small-scale experimental production and until it had been thoroughly tested for immunizing efficiency and freedom from harmful effects. It was thought that after four years testing this stage had been reached in 1935, and in the spring of that year the vaccine was issued for general use. It comprised a 10 percent saline suspension of brain, spinal cord and spleen tissues taken from sheep five days after infection with louping-ill virus by intracerebral inoculation. To this suspension 0-35 percent of formalin was added to inactivate the virus and its safety for use as a vaccine was checked by intracerbral inoculation of mice and sheep and by the inoculation of culture medium. Its protective power was proved by vaccination sheep and later subjecting them, along with controls, to a test dose of living virus.


Vaccine for issue had to be free from detectable, living virus and capable of protecting sheep against a test dose of virus applied subcutaneously. The 1935 vaccine conformed to these standards and was issued for inoculation in March as three separate batches labelled 1, 2, and 3. 


The tissues of 140 sheep were employed to make batch 1 of which 22,270 doses were used; 114 to make batch 2 of which 18,000 doses were used and 44 to make batch 3 of which 4,360 doses were used. All the sheep tissues incorporated in the vaccine were obtained from yearling sheep. 


During 1935 and 1936 the vaccine proved highly efficient in the prevention of loup-ill and no user observed an ill-effect in the inoculated animals. 


In September, 1937, two and a half years after vaccinating the sheep, two owners complained that scrapie, a disease which had not before been observed in the Blackface breed, was appearing in their stock of Blackface sheep and further that it was confined to animals vaccinated with louping-ill vaccine in 1935. At that stage it was difficult to conceive that the occurrence could be associated with the injection of the vaccine but in view of the implications, I visited most of the farms on which sheep had been vaccinated in 1935. It was at this point that the investigation reached its dramatic phase; I shall not forget the profound effect on my emotions when I visited these farms and was warmly welcomed because of the great benefits resulting from the application of louping-ill vaccine, wheras the chief purpose of my visit was to determine if scrapie was appearing in the inoculated sheep. 


The enquiry made the position clear. Scrapie was developing in the sheep vaccinated in 1935 and it was only in a few instances that the owner was associating the occurrence with louping-ill vaccination. The disease was affecting all breeds and it was confined to the animals vaccinated with batch 2. This was clearly demonstrated on a number of farms on which batch 1 had been used to inoculate the hoggs in 1935 and batch 2 to inoculate the ewes. None of the hoggs, which at this time were three- year-old ewes. At this time it was difficult to forecast whether all of the 18,000 sheep which had received batch 2 vaccine would develop scrapie. It was fortunate, however, that the majority of the sheep vaccinated with batch 2 were ewes and therefore all that were four years old and upwards at the time of vaccination had already been disposed of and there only remained the ewes which had been two to three years old at the time of vaccination, consequently no accurate assessment of the incidence of scrapie could be made. 


On a few farms, however, where vaccination was confined to hoggs, the incidence ranged from 1 percent, to 35 percent, with an average of about 5 percent. 


Since batch 2 vaccine had been incriminated as a probable source of scrapie infection, an attempt was made to trace the origin of the 112 sheep whose tissues had been included in the vaccine. It was found that they had been supplied by three owners and that all were of the Blackface or Greyface breed with the exception of eight which were Cheviot lambs born in 1935 from ewes which had been in contact with scrapie infection. Some of these contact ewes developed scrapie in 1936-37 and three surviving fellow lambs to the eight included in the batch 2 vaccine of 1935 developed scrapie, one in September, 1936, one in February, 1937, and one in November, 1937. 


There was, therefore, strong presumptive evidence that the eight Cheviot lambs included in the vaccine although apparently healthy were, in fact, in the incubative stage of a scrapie infection and that in their tissues there was an infective agent which had contaminated the batch 2 vaccine, rendering it liable to set up scrapie. If that assumption was correct then the evidence indicated that:-


(1) the infective agent of scrapie was present in the brain, spinal cord and or spleen of infected sheep:


(2) it could withstand a concentration of formalin of 0-35 percent, which inactivated the virus of louping-ill:


(3) it could be transmitted by subcutaneous inoculation;


(4) it had an incubative period of two years and longer.


Two Frenchmen, Cuille & Chelle (1939) as the result of experiments commenced in 1932, reported the successful infection of sheep by inoculation of emulsions of spinal cord or brain material by the intracerebral, epidural, intraocular and subcutaneous routes The incubation period varied according to the route employed, being one year intracerebrally, 15 months intraocularly and 20 months subcutaneously. They failed to infect rabbits but succeeded in infecting goats. Another important part of their work showed that the infective agent could pass throught a chamberland 1.3 filter, thus demonstrating that the infective agent was a filtrable virus. It was a curious coincidence that while they were doing their transmission experiments their work was being confirmed by the unforeseeable infectivity of a formalinized tissue vaccine.


As a result of this experience a large-scale transmission experiment involving the ue of 788 sheep was commenced in 1938 on a farm specially taken for the purpose by the Animal Diseases Research Association with funds provided by the Agricultural Research Council. The experiment was designed to determine the nature of the infective agent and the pathogenesis of the disease. It is only possible here to give a summary of the result which showed that 


(1) saline suspensions of brain and spinal cord tissue of sheep affected with scrapie were infective to normal sheep when inoculated intracerebrally or subcutaneously; 


(2) the incubation period after intracerebral inoculation was seven months and upwards and only 60 percent of the inoculated sheep developed scrapie during a period of four and a half years; 


(3) the incubation period after subcutaneous inoculation was 15 months and upwards and only about 30 percent of the inoculated sheep developed the disease during the four and a half years: 


(4) the infective agent was of small size and probably a filtrable virus.


The prolonged incubative period of the disease and the remarkable resistance of the causal agent to formalin are features of distinct interest. It still remains to determine if a biological test can be devised to detect infected animals so that they can be killed for food before they develop clinical symptoms and to explore the possibilities of producing an immunity to the disease.


==================================================================


Greetings List Members,


pretty disturbing document. now, what would stop this from happening with the vaccineCJD in children???


kind regards, Terry S. Singeltary Sr., Bacliff, Texas USA


==========


year 2018


NOW, my greatest fear is iatrogenic tse prion transmission, through many various routes and sources, and now back to vaccines and pigs from CWD TSE Prion...


first, reality; 


http://www.whale.to/v/singeltary.html


https://bseinquiry.blogspot.com/2008/05/mad-cow-disease-bse-cjd-children.html


https://bseinquiry.blogspot.com/2018/


https://vcjdblood.blogspot.com/2008/07/prion-diseases-are-efficiently.html


https://bseusa.blogspot.com/2010/02/import-alert-62-07-sygen-injectable.html


https://cjdusa.blogspot.com/2012/03/


MONDAY, NOVEMBER 02, 2020


Successful transmission of the chronic wasting disease (CWD) agent to white-tailed deer by intravenous blood transfusion


The identification of blood-borne transmission of the CWD agent is important in reinforcing the risk of exposure to CWD via blood as well as the possibility of hematogenous transmission of the CWD agent through insect vector. Finally, these results further highlight the importance of developing a sensitive and reproducible blood-based test to detect pre-clinical CWD, and warrant the continued advancement and evaluation of sensitive antemortem diagnostic tests for the detection of PrPSc in blood of asymptomatic cervids early in the incubation period. 


https://www.sciencedirect.com/science/article/pii/S003452882031047X?via%3Dihub


*** The potential impact of prion diseases on human health was greatly magnified by the recognition that interspecies transfer of BSE to humans by beef ingestion resulted in vCJD. While changes in animal feed constituents and slaughter practices appear to have curtailed vCJD, there is concern that CWD of free-ranging deer and elk in the U.S. might also cross the species barrier. Thus, consuming venison could be a source of human prion disease. Whether BSE and CWD represent interspecies scrapie transfer or are newly arisen prion diseases is unknown. Therefore, the possibility of transmission of prion disease through other food animals cannot be ruled out. There is evidence that vCJD can be transmitted through blood transfusion. There is likely a pool of unknown size of asymptomatic individuals infected with vCJD, and there may be asymptomatic individuals infected with the CWD equivalent. ***These circumstances represent a potential threat to blood, blood products, and plasma supplies.


''The brain of diseased Tg mice reveals the electrophoretic profile of PrPSc similar to sporadic Creutzfeldt-Jakob disease (sCJD) MM1 or VV2 subtype but different neuropathological patterns.'' 

''We believe that our study provides the first evidence that CWD PrPSc is able to convert human PrPC into PrPSc in vitro and the CWD-derived human PrPSc mimics atypical sCJD subtypes in humanized Tg mice.''

Published: 26 September 2021

Generation of human chronic wasting disease in transgenic mice

Zerui Wang, Kefeng Qin, Manuel V. Camacho, Ignazio Cali, Jue Yuan, Pingping Shen, Justin Greenlee, Qingzhong Kong, James A. Mastrianni & Wen-Quan Zou

Acta Neuropathologica Communications volume 9, Article number: 158 (2021)

Abstract

Chronic wasting disease (CWD) is a cervid prion disease caused by the accumulation of an infectious misfolded conformer (PrPSc) of cellular prion protein (PrPC). It has been spreading rapidly in North America and also found in Asia and Europe. Although bovine spongiform encephalopathy (i.e. mad cow disease) is the only animal prion disease known to be zoonotic, the transmissibility of CWD to humans remains uncertain. Here we report the generation of the first CWD-derived infectious human PrPSc by elk CWD PrPSc-seeded conversion of PrPC in normal human brain homogenates using in vitro protein misfolding cyclic amplification (PMCA). Western blotting with human PrP selective antibody confirmed that the PMCA-generated protease-resistant PrPSc was derived from the human PrPC substrate. Two lines of humanized transgenic mice expressing human PrP with either Val or Met at the polymorphic codon 129 developed clinical prion disease following intracerebral inoculation with the PMCA-generated CWD-derived human PrPSc. Diseased mice exhibited distinct PrPSc patterns and neuropathological changes in the brain. Our study, using PMCA and animal bioassays, provides the first evidence that CWD PrPSc can cross the species barrier to convert human PrPC into infectious PrPSc that can produce bona fide prion disease when inoculated into humanized transgenic mice.

Snip...

It is worth noting that the annual number of sporadic CJD (sCJD) cases in the USA has increased, with the total number of suspected and confirmed sCJD cases rising from 284 in 2003 to 511 in 2017 (https://www.cdc.gov/prions/cjd/occurrence-transmission.html). The greatly enhanced CJD surveillance and an aging population in the USA certainly contributed to the observed increase in annual sCJD case numbers in recent years, but the possibility cannot be excluded that some of the increased sCJD prevalence is linked to CWD exposure.

In the present study, using serial protein misfolding cyclic amplification (sPMCA) assay we generate PrPSc by seeding CWD prions in normal human brain homogenates. Importantly, we reveal that two lines of humanized Tg mice expressing human PrP-129VV and 129MM develop prion diseases upon intracerebral inoculation of the abnormal PrP generated by sPMCA. We believe that our study provides the first opportunity to dissect the clinical, pathological and biochemical features of the CWD-derived human prion disease in two lines of humanized Tg mice expressing two major human PrP genotypes, respectively.


i thought i might share some news about cwd zoonosis that i got, that i cannot share or post to the public yet, i promised for various reasons, one that it will cause a shit storm for sure, but it was something i really already knew from previous studies, but, i was told that ;

==================

''As you can imagine, 2 and 5 (especially 5) may raise alarms.  The evidence we have for 4 are not as strong or tight as I would like to have.   At this point, please do not post any of the points publicly yet, but you can refer to points 1-3 in private discussions and all 5 points when discussing with relevant public officials to highlight the long-term risks of CWD zoonosis.''

====================

so, i figure your as about as official as it gets, and i think this science is extremely important for you to know and to converse about with your officials. it's about to burn a whole in my pocket. this is about as close as it will ever get for cwd zoonosis to be proven in my time, this and what Canada Czub et al found with the Macaques, plus an old study from cjd surveillance unit back that showed cjd and a 9% increase in risk from folks that eat venison, i will post all this below for your files Sir. i remember back in the BSE nvCJD days, from when the first BSE case in bovine was confirmed around 1984 maybe 83, i forget the good vets named that screwed it up first, Carol something, but from 83ish to 95 96 when nvCJD was linked to humans from BSE in cattle, so that took 10 to 15 years. hell, at that rate, especially with Texas and cwd zoonsis, hell, i'll be dead before it's official, if ever, so here ya go Sir. there was a grant study on cwd zoonosis that had been going on for some time, i followed it over the years, then the grant date for said study had expired, so, i thought i would write the good Professor about said study i.e. Professor Kong, CWRU et al. i will post the grant study abstract first, and then after that, what reply i got back, about said study that i was told not to post/publish...

CWD ZOONOSIS GRANT FIRST;

===============

Cervid to human prion transmission

Kong, Qingzhong 

Case Western Reserve University, Cleveland, OH, United States

 Abstract Prion disease is transmissible and invariably fatal. Chronic wasting disease (CWD) is the prion disease affecting deer, elk and moose, and it is a widespread and expanding epidemic affecting 22 US States and 2 Canadian provinces so far. CWD poses the most serious zoonotic prion transmission risks in North America because of huge venison consumption (>6 million deer/elk hunted and consumed annually in the USA alone), significant prion infectivity in muscles and other tissues/fluids from CWD-affected cervids, and usually high levels of individual exposure to CWD resulting from consumption of the affected animal among often just family and friends. However, we still do not know whether CWD prions can infect humans in the brain or peripheral tissues or whether clinical/asymptomatic CWD zoonosis has already occurred, and we have no essays to reliably detect CWD infection in humans. We hypothesize that: (1) The classic CWD prion strain can infect humans at low levels in the brain and peripheral lymphoid tissues; (2) The cervid-to-human transmission barrier is dependent on the cervid prion strain and influenced by the host (human) prion protein (PrP) primary sequence; (3) Reliable essays can be established to detect CWD infection in humans; and (4) CWD transmission to humans has already occurred. We will test these hypotheses in 4 Aims using transgenic (Tg) mouse models and complementary in vitro approaches. 

Aim 1 will prove that the classical CWD strain may infect humans in brain or peripheral lymphoid tissues at low levels by conducting systemic bioassays in a set of humanized Tg mouse lines expressing common human PrP variants using a number of CWD isolates at varying doses and routes. Experimental human CWD samples will also be generated for Aim 3. 

Aim 2 will test the hypothesis that the cervid-to-human prion transmission barrier is dependent on prion strain and influenced by the host (human) PrP sequence by examining and comparing the transmission efficiency and phenotypes of several atypical/unusual CWD isolates/strains as well as a few prion strains from other species that have adapted to cervid PrP sequence, utilizing the same panel of humanized Tg mouse lines as in Aim 1. 

Aim 3 will establish reliable essays for detection and surveillance of CWD infection in humans by examining in details the clinical, pathological, biochemical and in vitro seeding properties of existing and future experimental human CWD samples generated from Aims 1-2 and compare them with those of common sporadic human Creutzfeldt-Jakob disease (sCJD) prions. 

Aim 4 will attempt to detect clinical CWD-affected human cases by examining a significant number of brain samples from prion-affected human subjects in the USA and Canada who have consumed venison from CWD-endemic areas utilizing the criteria and essays established in Aim 3. The findings from this proposal will greatly advance our understandings on the potential and characteristics of cervid prion transmission in humans, establish reliable essays for CWD zoonosis and potentially discover the first case(s) of CWD infection in humans.

Public Health Relevance There are significant and increasing human exposure to cervid prions because chronic wasting disease (CWD, a widespread and highly infectious prion disease among deer and elk in North America) continues spreading and consumption of venison remains popular, but our understanding on cervid-to-human prion transmission is still very limited, raising public health concerns. This proposal aims to define the zoonotic risks of cervid prions and set up and apply essays to detect CWD zoonosis using mouse models and in vitro methods. The findings will greatly expand our knowledge on the potentials and characteristics of cervid prion transmission in humans, establish reliable essays for such infections and may discover the first case(s) of CWD infection in humans.

 Funding Agency Agency National Institute of Health (NIH) Institute National Institute of Neurological Disorders and Stroke (NINDS) Type Research Project (R01) Project # 1R01NS088604-01A1 Application # 9037884 Study Section Cellular and Molecular Biology of Neurodegeneration Study Section (CMND) Program Officer Wong, May Project Start 2015-09-30 Project End 2019-07-31 Budget Start 2015-09-30 Budget End 2016-07-31 Support Year 1 Fiscal Year 2015 Total Cost $337,507 Indirect Cost $118,756

snip... 


Professor Kongs reply to me just this month about above grant study that has NOT been published in peer reveiw yet...

=================================

Here is a brief summary of our findings:

snip...can't post, made a promise...tss

On Sat, Apr 3, 2021 at 12:19 PM Terry Singeltary <flounder9@verizon.net> wrote:

snip...

end...tss

==============

CWD ZOONOSIS THE FULL MONTY TO DATE

International Conference on Emerging Diseases, Outbreaks & Case Studies & 16th Annual Meeting on Influenza March 28-29, 2018 | Orlando, USA

Qingzhong Kong

Case Western Reserve University School of Medicine, USA

Zoonotic potential of chronic wasting disease prions from cervids

Chronic wasting disease (CWD) is the prion disease in cervids (mule deer, white-tailed deer, American elk, moose, and reindeer). It has become an epidemic in North America, and it has been detected in the Europe (Norway) since 2016. The widespread CWD and popular hunting and consumption of cervid meat and other products raise serious public health concerns, but questions remain on human susceptibility to CWD prions, especially on the potential difference in zoonotic potential among the various CWD prion strains. We have been working to address this critical question for well over a decade. We used CWD samples from various cervid species to inoculate transgenic mice expressing human or elk prion protein (PrP). We found infectious prions in the spleen or brain in a small fraction of CWD-inoculated transgenic mice expressing human PrP, indicating that humans are not completely resistant to CWD prions; this finding has significant ramifications on the public health impact of CWD prions. The influence of cervid PrP polymorphisms, the prion strain dependence of CWD-to-human transmission barrier, and the characterization of experimental human CWD prions will be discussed.

Speaker Biography Qingzhong Kong has completed his PhD from the University of Massachusetts at Amherst and Post-doctoral studies at Yale University. He is currently an Associate Professor of Pathology, Neurology and Regenerative Medicine. He has published over 50 original research papers in reputable journals (including Science Translational Medicine, JCI, PNAS and Cell Reports) and has been serving as an Editorial Board Member on seven scientific journals. He has multiple research interests, including public health risks of animal prions (CWD of cervids and atypical BSE of cattle), animal modeling of human prion diseases, mechanisms of prion replication and pathogenesis, etiology of sporadic Creutzfeldt-Jacob disease (CJD) in humans, normal cellular PrP in the biology and pathology of multiple brain and peripheral diseases, proteins responsible for the α-cleavage of cellular PrP, as well as gene therapy and DNA vaccination.






Prion Conference 2018 Abstracts

BSE aka MAD COW DISEASE, was first discovered in 1984, and it took until 1995 to finally admit that BSE was causing nvCJD, the rest there is history, but that science is still evolving i.e. science now shows that indeed atypical L-type BSE, atypical Nor-98 Scrapie, and typical Scrapie are all zoonosis, zoonotic for humans, there from. 

HOW long are we going to wait for Chronic Wasting Disease, CWD TSE Prion of Cervid, and zoonosis, zoonotic tranmission to humans there from?

Studies have shown since 1994 that humans are susceptible to CWD TSE Prion, so, what's the hold up with making CWD a zoonotic zoonosis disease, the iatrogenic transmissions there from is not waiting for someone to make a decision.

Prion Conference 2018 Abstracts

P190 Human prion disease mortality rates by occurrence of chronic wasting disease in freeranging cervids, United States

Abrams JY (1), Maddox RA (1), Schonberger LB (1), Person MK (1), Appleby BS (2), Belay ED (1)

(1) Centers for Disease Control and Prevention (CDC), National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, GA, USA (2) Case Western Reserve University, National Prion Disease Pathology Surveillance Center (NPDPSC), Cleveland, OH, USA.

Background

Chronic wasting disease (CWD) is a prion disease of deer and elk that has been identified in freeranging cervids in 23 US states. While there is currently no epidemiological evidence for zoonotic transmission through the consumption of contaminated venison, studies suggest the CWD agent can cross the species barrier in experimental models designed to closely mimic humans. We compared rates of human prion disease in states with and without CWD to examine the possibility of undetermined zoonotic transmission.

Methods

Death records from the National Center for Health Statistics, case records from the National Prion Disease Pathology Surveillance Center, and additional state case reports were combined to create a database of human prion disease cases from 2003-2015. Identification of CWD in each state was determined through reports of positive CWD tests by state wildlife agencies. Age- and race-adjusted mortality rates for human prion disease, excluding cases with known etiology, were determined for four categories of states based on CWD occurrence: highly endemic (>16 counties with CWD identified in free-ranging cervids); moderately endemic (3-10 counties with CWD); low endemic (1-2 counties with CWD); and no CWD states. States were counted as having no CWD until the year CWD was first identified. Analyses stratified by age, sex, and time period were also conducted to focus on subgroups for which zoonotic transmission would be more likely to be detected: cases <55 years old, male sex, and the latter half of the study (2010-2015).

Results

Highly endemic states had a higher rate of prion disease mortality compared to non-CWD states (rate ratio [RR]: 1.12, 95% confidence interval [CI] = 1.01 - 1.23), as did low endemic states (RR: 1.15, 95% CI = 1.04 - 1.27). Moderately endemic states did not have an elevated mortality rate (RR: 1.05, 95% CI = 0.93 - 1.17). In age-stratified analyses, prion disease mortality rates among the <55 year old population were elevated for moderately endemic states (RR: 1.57, 95% CI = 1.10 – 2.24) while mortality rates were elevated among those ≥55 for highly endemic states (RR: 1.13, 95% CI = 1.02 - 1.26) and low endemic states (RR: 1.16, 95% CI = 1.04 - 1.29). In other stratified analyses, prion disease mortality rates for males were only elevated for low endemic states (RR: 1.27, 95% CI = 1.10 - 1.48), and none of the categories of CWD-endemic states had elevated mortality rates for the latter time period (2010-2015).

Conclusions

While higher prion disease mortality rates in certain categories of states with CWD in free-ranging cervids were noted, additional stratified analyses did not reveal markedly elevated rates for potentially sensitive subgroups that would be suggestive of zoonotic transmission. Unknown confounding factors or other biases may explain state-by-state differences in prion disease mortality.

=====

P172 Peripheral Neuropathy in Patients with Prion Disease

Wang H(1), Cohen M(1), Appleby BS(1,2)

(1) University Hospitals Cleveland Medical Center, Cleveland, Ohio (2) National Prion Disease Pathology Surveillance Center, Cleveland, Ohio.

Prion disease is a fatal progressive neurodegenerative disease due to deposition of an abnormal protease-resistant isoform of prion protein. Typical symptoms include rapidly progressive dementia, myoclonus, visual disturbance and hallucinations. Interestingly, in patients with prion disease, the abnormal protein canould also be found in the peripheral nervous system. Case reports of prion deposition in peripheral nerves have been reported. Peripheral nerve involvement is thought to be uncommon; however, little is known about the exact prevalence and features of peripheral neuropathy in patients with prion disease.

We reviewed autopsy-proven prion cases from the National Prion Disease Pathology Surveillance Center that were diagnosed between September 2016 to March 2017. We collected information regarding prion protein diagnosis, demographics, comorbidities, clinical symptoms, physical exam, neuropathology, molecular subtype, genetics lab, brain MRI, image and EMG reports. Our study included 104 patients. Thirteen (12.5%) patients had either subjective symptoms or objective signs of peripheral neuropathy. Among these 13 patients, 3 had other known potential etiologies of peripheral neuropathy such as vitamin B12 deficiency or prior chemotherapy. Among 10 patients that had no other clear etiology, 3 (30%) had familial CJD. The most common sCJD subtype was MV1-2 (30%), followed by MM1-2 (20%). The Majority of cases wasere male (60%). Half of them had exposure to wild game. The most common subjective symptoms were tingling and/or numbness of distal extremities. The most common objective finding was diminished vibratory sensation in the feet. Half of them had an EMG with the findings ranging from fasciculations to axonal polyneuropathy or demyelinating polyneuropathy.

Our study provides an overview of the pattern of peripheral neuropathy in patients with prion disease. Among patients with peripheral neuropathy symptoms or signs, majority has polyneuropathy. It is important to document the baseline frequency of peripheral neuropathy in prion diseases as these symptoms may become important when conducting surveillance for potential novel zoonotic prion diseases.

=====

P177 PrP plaques in methionine homozygous Creutzfeldt-Jakob disease patients as a potential marker of iatrogenic transmission

Abrams JY (1), Schonberger LB (1), Cali I (2), Cohen Y (2), Blevins JE (2), Maddox RA (1), Belay ED (1), Appleby BS (2), Cohen ML (2)

(1) Centers for Disease Control and Prevention (CDC), National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, GA, USA (2) Case Western Reserve University, National Prion Disease Pathology Surveillance Center (NPDPSC), Cleveland, OH, USA.

Background

Sporadic Creutzfeldt-Jakob disease (CJD) is widely believed to originate from de novo spontaneous conversion of normal prion protein (PrP) to its pathogenic form, but concern remains that some reported sporadic CJD cases may actually be caused by disease transmission via iatrogenic processes. For cases with methionine homozygosity (CJD-MM) at codon 129 of the PRNP gene, recent research has pointed to plaque-like PrP deposition as a potential marker of iatrogenic transmission for a subset of cases. This phenotype is theorized to originate from specific iatrogenic source CJD types that comprise roughly a quarter of known CJD cases.

Methods

We reviewed scientific literature for studies which described PrP plaques among CJD patients with known epidemiological links to iatrogenic transmission (receipt of cadaveric human grown hormone or dura mater), as well as in cases of reported sporadic CJD. The presence and description of plaques, along with CJD classification type and other contextual factors, were used to summarize the current evidence regarding plaques as a potential marker of iatrogenic transmission. In addition, 523 cases of reported sporadic CJD cases in the US from January 2013 through September 2017 were assessed for presence of PrP plaques.

Results

We identified four studies describing 52 total cases of CJD-MM among either dura mater recipients or growth hormone recipients, of which 30 were identified as having PrP plaques. While sporadic cases were not generally described as having plaques, we did identify case reports which described plaques among sporadic MM2 cases as well as case reports of plaques exclusively in white matter among sporadic MM1 cases. Among the 523 reported sporadic CJD cases, 0 of 366 MM1 cases had plaques, 2 of 48 MM2 cases had kuru plaques, and 4 of 109 MM1+2 cases had either kuru plaques or both kuru and florid plaques. Medical chart review of the six reported sporadic CJD cases with plaques did not reveal clinical histories suggestive of potential iatrogenic transmission.

Conclusions

PrP plaques occur much more frequently for iatrogenic CJD-MM cases compared to sporadic CJDMM cases. Plaques may indicate iatrogenic transmission for CJD-MM cases without a type 2 Western blot fragment. The study results suggest the absence of significant misclassifications of iatrogenic CJD as sporadic. To our knowledge, this study is the first to describe grey matter kuru plaques in apparently sporadic CJD-MM patients with a type 2 Western blot fragment.

=====

P180 Clinico-pathological analysis of human prion diseases in a brain bank series

Ximelis T (1), Aldecoa I (1,2), Molina-Porcel L (1,3), Grau-Rivera O (4), Ferrer I (5), Nos C (6), Gelpi E (1,7), Sánchez-Valle R (1,4)

(1) Neurological Tissue Bank of the Biobanc-Hospital ClÃnic-IDIBAPS, Barcelona, Spain (2) Pathological Service of Hospital ClÃnic de Barcelona, Barcelona, Spain (3) EAIA Trastorns Cognitius, Centre Emili Mira, Parc de Salut Mar, Barcelona, Spain (4) Department of Neurology of Hospital ClÃnic de Barcelona, Barcelona, Spain (5) Institute of Neuropathology, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona (6) General subdirectorate of Surveillance and Response to Emergencies in Public Health, Department of Public Health in Catalonia, Barcelona, Spain (7) Institute of Neurology, Medical University of Vienna, Vienna, Austria.

Background and objective:

The Neurological Tissue Bank (NTB) of the Hospital Clínic-Institut d‘Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain is the reference center in Catalonia for the neuropathological study of prion diseases in the region since 2001. The aim of this study is to analyse the characteristics of the confirmed prion diseases registered at the NTB during the last 15 years.

Methods:

We reviewed retrospectively all neuropathologically confirmed cases registered during the period January 2001 to December 2016.

Results:

176 cases (54,3% female, mean age: 67,5 years and age range: 25-86 years) of neuropathological confirmed prion diseases have been studied at the NTB. 152 cases corresponded to sporadic Creutzfeldt-Jakob disease (sCJD), 10 to genetic CJD, 10 to Fatal Familial Insomnia, 2 to GerstmannSträussler-Scheinker disease, and 2 cases to variably protease-sensitive prionopathy (VPSPr). Within sCJD subtypes the MM1 subtype was the most frequent, followed by the VV2 histotype.

Clinical and neuropathological diagnoses agreed in 166 cases (94%). The clinical diagnosis was not accurate in 10 patients with definite prion disease: 1 had a clinical diagnosis of Fronto-temporal dementia (FTD), 1 Niemann-Pick‘s disease, 1 Lewy Body‘s Disease, 2 Alzheimer‘s disease, 1 Cortico-basal syndrome and 2 undetermined dementia. Among patients with VPSPr, 1 had a clinical diagnosis of Amyotrophic lateral sclerosis (ALS) and the other one with FTD.

Concomitant pathologies are frequent in older age groups, mainly AD neuropathological changes were observed in these subjects.

Discussion:

A wide spectrum of human prion diseases have been identified in the NTB being the relative frequencies and main characteristics like other published series. There is a high rate of agreement between clinical and neuropathological diagnoses with prion diseases. These findings show the importance that public health has given to prion diseases during the past 15 years. Continuous surveillance of human prion disease allows identification of new emerging phenotypes. Brain tissue samples from these donors are available to the scientific community. For more information please visit:


=====

P192 Prion amplification techniques for the rapid evaluation of surface decontamination procedures

Bruyere-Ostells L (1), Mayran C (1), Belondrade M (1), Boublik Y (2), Haïk S (3), Fournier-Wirth C (1), Nicot S (1), Bougard D (1)

(1) Pathogenesis and control of chronic infections, Etablissement Français du Sang, Inserm, Université de Montpellier, Montpellier, France. (2) Centre de Recherche en Biologie cellulaire de Montpellier, CNRS, Université de Montpellier, Montpellier, France. (3) Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.

Aims:

Transmissible Spongiform Encephalopathies (TSE) or prion diseases are a group of incurable and always fatal neurodegenerative disorders including Creutzfeldt-Jakob diseases (CJD) in humans. These pathologies include sporadic (sCJD), genetic and acquired (variant CJD) forms. By the past, sCJD and vCJD were transmitted by different prion contaminated biological materials to patients resulting in more than 400 iatrogenic cases (iCJD). The atypical nature and the biochemical properties of the infectious agent, formed by abnormal prion protein or PrPTSE, make it particularly resistant to conventional decontamination procedures. In addition, PrPTSE is widely distributed throughout the organism before clinical onset in vCJD and can also be detected in some peripheral tissues in sporadic CJD. Risk of iatrogenic transmission of CJD by contaminated medical device remains thus a concern for healthcare facilities. Bioassay is the gold standard method to evaluate the efficacy of prion decontamination procedures but is time-consuming and expensive. Here, we propose to compare in vitro prion amplification techniques: Protein Misfolding Cyclic Amplification (PMCA) and Real-Time Quaking Induced Conversion (RT-QuIC) for the detection of residual prions on surface after decontamination.

Methods:

Stainless steel wires, by mimicking the surface of surgical instruments, were proposed as a carrier model of prions for inactivation studies. To determine the sensitivity of the two amplification techniques on wires (Surf-PMCA and Surf-QuIC), steel wires were therefore contaminated with serial dilutions of brain homogenates (BH) from a 263k infected hamster and from a patient with sCJD (MM1 subtype). We then compared the different standard decontamination procedures including partially and fully efficient treatments by detecting the residual seeding activity on 263K and sCJD contaminated wires. We completed our study by the evaluation of marketed reagents endorsed for prion decontamination.

Results:

The two amplification techniques can detect minute quantities of PrPTSE adsorbed onto a single wire. 8/8 wires contaminated with a 10-6 dilution of 263k BH and 1/6 with the 10-8 dilution are positive with Surf-PMCA. Similar performances were obtained with Surf-QuIC on 263K: 10/16 wires contaminated with 10-6 dilution and 1/8 wires contaminated with 10-8 dilution are positive. Regarding the human sCJD-MM1 prion, Surf-QuIC allows us to detect 16/16 wires contaminated with 10-6 dilutions and 14/16 with 10-7 . Results obtained after decontamination treatments are very similar between 263K and sCJD prions. Efficiency of marketed treatments to remove prions is lower than expected.

Conclusions:

Surf-PMCA and Surf-QuIC are very sensitive methods for the detection of prions on wires and could be applied to prion decontamination studies for rapid evaluation of new treatments. Sodium hypochlorite is the only product to efficiently remove seeding activity of both 263K and sCJD prions.

=====

WA2 Oral transmission of CWD into Cynomolgus macaques: signs of atypical disease, prion conversion and infectivity in macaques and bio-assayed transgenic mice

Schatzl HM (1, 2), Hannaoui S (1, 2), Cheng Y-C (1, 2), Gilch S (1, 2), Beekes M (3), SchulzSchaeffer W (4), Stahl-Hennig C (5) and Czub S (2, 6)

(1) University of Calgary, Calgary Prion Research Unit, Calgary, Canada (2) University of Calgary, Faculty of Veterinary Medicine, Calgary, Canada, (3) Robert Koch Institute, Berlin, Germany, (4) University of Homburg/Saar, Homburg, Germany, (5) German Primate Center, Goettingen, Germany, (6) Canadian Food Inspection Agency (CFIA), Lethbridge, Canada.

To date, BSE is the only example of interspecies transmission of an animal prion disease into humans. The potential zoonotic transmission of CWD is an alarming issue and was addressed by many groups using a variety of in vitro and in vivo experimental systems. Evidence from these studies indicated a substantial, if not absolute, species barrier, aligning with the absence of epidemiological evidence suggesting transmission into humans. Studies in non-human primates were not conclusive so far, with oral transmission into new-world monkeys and no transmission into old-world monkeys. Our consortium has challenged 18 Cynomolgus macaques with characterized CWD material, focusing on oral transmission with muscle tissue. Some macaques have orally received a total of 5 kg of muscle material over a period of 2 years. After 5-7 years of incubation time some animals showed clinical symptoms indicative of prion disease, and prion neuropathology and PrPSc deposition were found in spinal cord and brain of euthanized animals. PrPSc in immunoblot was weakly detected in some spinal cord materials and various tissues tested positive in RT-QuIC, including lymph node and spleen homogenates. To prove prion infectivity in the macaque tissues, we have intracerebrally inoculated 2 lines of transgenic mice, expressing either elk or human PrP. At least 3 TgElk mice, receiving tissues from 2 different macaques, showed clinical signs of a progressive prion disease and brains were positive in immunoblot and RT-QuIC. Tissues (brain, spinal cord and spleen) from these and preclinical mice are currently tested using various read-outs and by second passage in mice. Transgenic mice expressing human PrP were so far negative for clear clinical prion disease (some mice >300 days p.i.). In parallel, the same macaque materials are inoculated into bank voles. Taken together, there is strong evidence of transmissibility of CWD orally into macaques and from macaque tissues into transgenic mouse models, although with an incomplete attack rate. The clinical and pathological presentation in macaques was mostly atypical, with a strong emphasis on spinal cord pathology. Our ongoing studies will show whether the transmission of CWD into macaques and passage in transgenic mice represents a form of non-adaptive prion amplification, and whether macaque-adapted prions have the potential to infect mice expressing human PrP. The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD.

See also poster P103

***> The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD.

=====

WA16 Monitoring Potential CWD Transmission to Humans

Belay ED

Centers for Disease Control and Prevention (CDC), National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, GA, USA.

The spread of chronic wasting disease (CWD) in animals has raised concerns about increasing human exposure to the CWD agent via hunting and venison consumption, potentially facilitating CWD transmission to humans. Several studies have explored this possibility, including limited epidemiologic studies, in vitro experiments, and laboratory studies using various types of animal models. Most human exposures to the CWD agent in the United States would be expected to occur in association with deer and elk hunting in CWD-endemic areas. The Centers for Disease Control and Prevention (CDC) collaborated with state health departments in Colorado, Wisconsin, and Wyoming to identify persons at risk of CWD exposure and to monitor their vital status over time. Databases were established of persons who hunted in Colorado and Wyoming and those who reported consumption of venison from deer that later tested positive in Wisconsin. Information from the databases is periodically cross-checked with mortality data to determine the vital status and causes of death for deceased persons. Long-term follow-up of these hunters is needed to assess their risk of development of a prion disease linked to CWD exposure.

=====

P166 Characterization of CJD strain profiles in venison consumers and non-consumers from Alberta and Saskatchewan

Stephanie Booth (1,2), Lise Lamoureux (1), Debra Sorensen (1), Jennifer L. Myskiw (1,2), Megan Klassen (1,2), Michael Coulthart (3), Valerie Sim (4)

(1) Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg (2) Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg (3) Canadian CJD Surveillance System, Public Health Agency of Canada, Ottawa (4) Division of Neurology, Department of Medicine Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton.

Chronic wasting disease (CWD) is spreading rapidly through wild cervid populations in the Canadian provinces of Alberta and Saskatchewan. While this has implications for tourism and hunting, there is also concern over possible zoonotic transmission to humans who eat venison from infected deer. Whilst there is no evidence of any human cases of CWD to date, the Canadian CJD Surveillance System (CJDSS) in Canada is staying vigilant. When variant CJD occurred following exposure to BSE, the unique biochemical fingerprint of the pathologic PrP enabled a causal link to be confirmed. However, we cannot be sure what phenotype human CWD prions would present with, or indeed, whether this would be distinct from that see in sporadic CJD. Therefore we are undertaking a systematic analysis of the molecular diversity of CJD cases of individuals who resided in Alberta and Saskatchewan at their time of death comparing venison consumers and non-consumers, using a variety of clinical, imaging, pathological and biochemical markers. Our initial objective is to develop novel biochemical methodologies that will extend the baseline glycoform and genetic polymorphism typing that is already completed by the CJDSS. Firstly, we are reviewing MRI, EEG and pathology information from over 40 cases of CJD to select clinically affected areas for further investigation. Biochemical analysis will include assessment of the levels of protease sensitive and resistant prion protein, glycoform typing using 2D gel electrophoresis, testing seeding capabilities and kinetics of aggregation by quaking-induced conversion, and determining prion oligomer size distributions with asymmetric flow field fractionation with in-line light scattering. Progress and preliminary data will be presented. Ultimately, we intend to further define the relationship between PrP structure and disease phenotype and establish a baseline for the identification of future atypical CJD cases that may arise as a result of exposure to CWD.

=====

Source Prion Conference 2018 Abstracts




Volume 24, Number 8—August 2018 Research Susceptibility of Human Prion Protein to Conversion by Chronic Wasting Disease Prions

Marcelo A. BarriaComments to Author , Adriana Libori, Gordon Mitchell, and Mark W. Head Author affiliations: National CJD Research and Surveillance Unit, University of Edinburgh, Edinburgh, Scotland, UK (M.A. Barria, A. Libori, M.W. Head); National and OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection Agency, Ottawa, Ontario, Canada (G. Mitchell)

Abstract Chronic wasting disease (CWD) is a contagious and fatal neurodegenerative disease and a serious animal health issue for deer and elk in North America. The identification of the first cases of CWD among free-ranging reindeer and moose in Europe brings back into focus the unresolved issue of whether CWD can be zoonotic like bovine spongiform encephalopathy. We used a cell-free seeded protein misfolding assay to determine whether CWD prions from elk, white-tailed deer, and reindeer in North America can convert the human prion protein to the disease-associated form. We found that prions can convert, but the efficiency of conversion is affected by polymorphic variation in the cervid and human prion protein genes. In view of the similarity of reindeer, elk, and white-tailed deer in North America to reindeer, red deer, and roe deer, respectively, in Europe, a more comprehensive and thorough assessment of the zoonotic potential of CWD might be warranted.

snip...

Discussion Characterization of the transmission properties of CWD and evaluation of their zoonotic potential are important for public health purposes. Given that CWD affects several members of the family Cervidae, it seems reasonable to consider whether the zoonotic potential of CWD prions could be affected by factors such as CWD strain, cervid species, geographic location, and Prnp–PRNP polymorphic variation. We have previously used an in vitro conversion assay (PMCA) to investigate the susceptibility of the human PrP to conversion to its disease-associated form by several animal prion diseases, including CWD (15,16,22). The sensitivity of our molecular model for the detection of zoonotic conversion depends on the combination of 1) the action of proteinase K to degrade the abundant human PrPC that constitutes the substrate while only N terminally truncating any human PrPres produced and 2) the presence of the 3F4 epitope on human but not cervid PrP. In effect, this degree of sensitivity means that any human PrPres formed during the PMCA reaction can be detected down to the limit of Western blot sensitivity. In contrast, if other antibodies that detect both cervid and human PrP are used, such as 6H4, then newly formed human PrPres must be detected as a measurable increase in PrPres over the amount remaining in the reaction product from the cervid seed. Although best known for the efficient amplification of prions in research and diagnostic contexts, the variation of the PMCA method employed in our study is optimized for the definitive detection of zoonotic reaction products of inherently inefficient conversion reactions conducted across species barriers. By using this system, we previously made and reported the novel observation that elk CWD prions could convert human PrPC from human brain and could also convert recombinant human PrPC expressed in transgenic mice and eukaryotic cell cultures (15).

A previous publication suggested that mule deer PrPSc was unable to convert humanized transgenic substrate in PMCA assays (23) and required a further step of in vitro conditioning in deer substrate PMCA before it was able to cross the deer–human molecular barrier (24). However, prions from other species, such as elk (15) and reindeer affected by CWD, appear to be compatible with the human protein in a single round of amplification (as shown in our study). These observations suggest that different deer species affected by CWD could present differing degrees of the olecular compatibility with the normal form of human PrP.

The contribution of the polymorphism at codon 129 of the human PrP gene has been extensively studied and is recognized as a risk factor for Creutzfeldt-Jakob disease (4). In cervids, the equivalent codon corresponds to the position 132 encoding methionine or leucine. This polymorphism in the elk gene has been shown to play an important role in CWD susceptibility (25,26). We have investigated the effect of this cervid Prnp polymorphism on the conversion of the humanized transgenic substrate according to the variation in the equivalent PRNP codon 129 polymorphism. Interestingly, only the homologs methionine homozygous seed–substrate reactions could readily convert the human PrP, whereas the heterozygous elk PrPSc was unable to do so, even though comparable amounts of PrPres were used to seed the reaction. In addition, we observed only low levels of human PrPres formation in the reactions seeded with the homozygous methionine (132 MM) and the heterozygous (132 ML) seeds incubated with the other 2 human polymorphic substrates (129 MV and 129 VV). The presence of the amino acid leucine at position 132 of the elk Prnp gene has been attributed to a lower degree of prion conversion compared with methionine on the basis of experiments in mice made transgenic for these polymorphic variants (26). Considering the differences observed for the amplification of the homozygous human methionine substrate by the 2 polymorphic elk seeds (MM and ML), reappraisal of the susceptibility of human PrPC by the full range of cervid polymorphic variants affected by CWD would be warranted.

In light of the recent identification of the first cases of CWD in Europe in a free-ranging reindeer (R. tarandus) in Norway (2), we also decided to evaluate the in vitro conversion potential of CWD in 2 experimentally infected reindeer (18). Formation of human PrPres was readily detectable after a single round of PMCA, and in all 3 humanized polymorphic substrates (MM, MV, and VV). This finding suggests that CWD prions from reindeer could be more compatible with human PrPC generally and might therefore present a greater risk for zoonosis than, for example, CWD prions from white-tailed deer. A more comprehensive comparison of CWD in the affected species, coupled with the polymorphic variations in the human and deer PRNP–Prnp genes, in vivo and in vitro, will be required before firm conclusions can be drawn. Analysis of the Prnp sequence of the CWD reindeer in Norway was reported to be identical to the specimens used in our study (2). This finding raises the possibility of a direct comparison of zoonotic potential between CWD acquired in the wild and that produced in a controlled laboratory setting. (Table).

The prion hypothesis proposes that direct molecular interaction between PrPSc and PrPC is necessary for conversion and prion replication. Accordingly, polymorphic variants of the PrP of host and agent might play a role in determining compatibility and potential zoonotic risk. In this study, we have examined the capacity of the human PrPC to support in vitro conversion by elk, white-tailed deer, and reindeer CWD PrPSc. Our data confirm that elk CWD prions can convert the human PrPC, at least in vitro, and show that the homologous PRNP polymorphisms at codon 129 and 132 in humans and cervids affect conversion efficiency. Other species affected by CWD, particularly caribou or reindeer, also seem able to convert the human PrP. It will be important to determine whether other polymorphic variants found in other CWD-affected Cervidae or perhaps other factors (17) exert similar effects on the ability to convert human PrP and thus affect their zoonotic potential.

Dr. Barria is a research scientist working at the National CJD Research and Surveillance Unit, University of Edinburgh. His research has focused on understanding the molecular basis of a group of fatal neurologic disorders called prion diseases.

Acknowledgments We thank Aru Balachandran for originally providing cervid brain tissues, Abigail Diack and Jean Manson for providing mouse brain tissue, and James Ironside for his critical reading of the manuscript at an early stage.

This report is independent research commissioned and funded by the United Kingdom’s Department of Health Policy Research Programme and the Government of Scotland. The views expressed in this publication are those of the authors and not necessarily those of the Department of Health or the Government of Scotland.

Author contributions: The study was conceived and designed by M.A.B. and M.W.H. The experiments were conducted by M.A.B. and A.L. Chronic wasting disease brain specimens were provided by G.M. The manuscript was written by M.A.B. and M.W.H. All authors contributed to the editing and revision of the manuscript.



Prion 2017 Conference Abstracts
First evidence of intracranial and peroral transmission of Chronic Wasting Disease (CWD) into Cynomolgus macaques: a work in progress Stefanie Czub1, Walter Schulz-Schaeffer2, Christiane Stahl-Hennig3, Michael Beekes4, Hermann Schaetzl5 and Dirk Motzkus6 1 
University of Calgary Faculty of Veterinary Medicine/Canadian Food Inspection Agency; 2Universitatsklinikum des Saarlandes und Medizinische Fakultat der Universitat des Saarlandes; 3 Deutsches Primaten Zentrum/Goettingen; 4 Robert-Koch-Institut Berlin; 5 University of Calgary Faculty of Veterinary Medicine; 6 presently: Boehringer Ingelheim Veterinary Research Center; previously: Deutsches Primaten Zentrum/Goettingen 
This is a progress report of a project which started in 2009. 
21 cynomolgus macaques were challenged with characterized CWD material from white-tailed deer (WTD) or elk by intracerebral (ic), oral, and skin exposure routes. Additional blood transfusion experiments are supposed to assess the CWD contamination risk of human blood product. Challenge materials originated from symptomatic cervids for ic, skin scarification and partially per oral routes (WTD brain). Challenge material for feeding of muscle derived from preclinical WTD and from preclinical macaques for blood transfusion experiments. We have confirmed that the CWD challenge material contained at least two different CWD agents (brain material) as well as CWD prions in muscle-associated nerves. 
Here we present first data on a group of animals either challenged ic with steel wires or per orally and sacrificed with incubation times ranging from 4.5 to 6.9 years at postmortem. Three animals displayed signs of mild clinical disease, including anxiety, apathy, ataxia and/or tremor. In four animals wasting was observed, two of those had confirmed diabetes. All animals have variable signs of prion neuropathology in spinal cords and brains and by supersensitive IHC, reaction was detected in spinal cord segments of all animals. Protein misfolding cyclic amplification (PMCA), real-time quaking-induced conversion (RT-QuiC) and PET-blot assays to further substantiate these findings are on the way, as well as bioassays in bank voles and transgenic mice. 
At present, a total of 10 animals are sacrificed and read-outs are ongoing. Preclinical incubation of the remaining macaques covers a range from 6.4 to 7.10 years. Based on the species barrier and an incubation time of > 5 years for BSE in macaques and about 10 years for scrapie in macaques, we expected an onset of clinical disease beyond 6 years post inoculation. 
PRION 2017 DECIPHERING NEURODEGENERATIVE DISORDERS ABSTRACTS REFERENCE
8. Even though human TSE‐exposure risk through consumption of game from European cervids can be assumed to be minor, if at all existing, no final conclusion can be drawn due to the overall lack of scientific data. In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids. It might be prudent considering appropriate measures to reduce such a risk, e.g. excluding tissues such as CNS and lymphoid tissues from the human food chain, which would greatly reduce any potential risk for consumers. However, it is stressed that currently, no data regarding a risk of TSE infections from cervid products are available.


SATURDAY, FEBRUARY 23, 2019 

Chronic Wasting Disease CWD TSE Prion and THE FEAST 2003 CDC an updated review of the science 2019


TUESDAY, NOVEMBER 04, 2014 

Six-year follow-up of a point-source exposure to CWD contaminated venison in an Upstate New York community: risk behaviours and health outcomes 2005–2011

Authors, though, acknowledged the study was limited in geography and sample size and so it couldn't draw a conclusion about the risk to humans. They recommended more study. Dr. Ermias Belay was the report's principal author but he said New York and Oneida County officials are following the proper course by not launching a study. "There's really nothing to monitor presently. No one's sick," Belay said, noting the disease's incubation period in deer and elk is measured in years. "


Transmission Studies

Mule deer transmissions of CWD were by intracerebral inoculation and compared with natural cases {the following was written but with a single line marked through it ''first passage (by this route)}....TSS

resulted in a more rapidly progressive clinical disease with repeated episodes of synocopy ending in coma. One control animal became affected, it is believed through contamination of inoculum (?saline). Further CWD transmissions were carried out by Dick Marsh into ferret, mink and squirrel monkey. Transmission occurred in ALL of these species with the shortest incubation period in the ferret.

snip.... 


Prion Infectivity in Fat of Deer with Chronic Wasting Disease▿ 

Brent Race#, Kimberly Meade-White#, Richard Race and Bruce Chesebro* + Author Affiliations

In mice, prion infectivity was recently detected in fat. Since ruminant fat is consumed by humans and fed to animals, we determined infectivity titers in fat from two CWD-infected deer. Deer fat devoid of muscle contained low levels of CWD infectivity and might be a risk factor for prion infection of other species. 


Prions in Skeletal Muscles of Deer with Chronic Wasting Disease 

Here bioassays in transgenic mice expressing cervid prion protein revealed the presence of infectious prions in skeletal muscles of CWD-infected deer, demonstrating that humans consuming or handling meat from CWD-infected deer are at risk to prion exposure. 


*** now, let’s see what the authors said about this casual link, personal communications years ago, and then the latest on the zoonotic potential from CWD to humans from the TOKYO PRION 2016 CONFERENCE.

see where it is stated NO STRONG evidence. so, does this mean there IS casual evidence ???? “Our conclusion stating that we found no strong evidence of CWD transmission to humans”

From: TSS 

Subject: CWD aka MAD DEER/ELK TO HUMANS ???

Date: September 30, 2002 at 7:06 am PST

From: "Belay, Ermias"

To: Cc: "Race, Richard (NIH)" ; ; "Belay, Ermias"

Sent: Monday, September 30, 2002 9:22 AM

Subject: RE: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS

Dear Sir/Madam,

In the Archives of Neurology you quoted (the abstract of which was attached to your email), we did not say CWD in humans will present like variant CJD.. That assumption would be wrong. I encourage you to read the whole article and call me if you have questions or need more clarification (phone: 404-639-3091). Also, we do not claim that "no-one has ever been infected with prion disease from eating venison." Our conclusion stating that we found no strong evidence of CWD transmission to humans in the article you quoted or in any other forum is limited to the patients we investigated.

Ermias Belay, M.D. Centers for Disease Control and Prevention

-----Original Message-----

From: Sent: Sunday, September 29, 2002 10:15 AM


Subject: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS

Sunday, November 10, 2002 6:26 PM .......snip........end..............TSS

Thursday, April 03, 2008

A prion disease of cervids: Chronic wasting disease 2008 1: Vet Res. 2008 Apr 3;39(4):41 A prion disease of cervids: Chronic wasting disease Sigurdson CJ.

snip...

*** twenty-seven CJD patients who regularly consumed venison were reported to the Surveillance Center***,

snip... full text ; 


> However, to date, no CWD infections have been reported in people. 

sporadic, spontaneous CJD, 85%+ of all human TSE, did not just happen. never in scientific literature has this been proven.

if one looks up the word sporadic or spontaneous at pubmed, you will get a laundry list of disease that are classified in such a way;



key word here is 'reported'. science has shown that CWD in humans will look like sporadic CJD. SO, how can one assume that CWD has not already transmitted to humans? they can't, and it's as simple as that. from all recorded science to date, CWD has already transmitted to humans, and it's being misdiagnosed as sporadic CJD. ...terry 

*** LOOKING FOR CWD IN HUMANS AS nvCJD or as an ATYPICAL CJD, LOOKING IN ALL THE WRONG PLACES $$$ ***

> However, to date, no CWD infections have been reported in people.
key word here is ‘reported’. science has shown that CWD in humans will look like sporadic CJD. SO, how can one assume that CWD has not already transmitted to humans? they can’t, and it’s as simple as that. from all recorded science to date, CWD has already transmitted to humans, and it’s being misdiagnosed as sporadic CJD. …terry
*** LOOKING FOR CWD IN HUMANS AS nvCJD or as an ATYPICAL CJD, LOOKING IN ALL THE WRONG PLACES $$$ ***
*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).***
CWD TSE PRION AND ZOONOTIC, ZOONOSIS, POTENTIAL

Subject: Re: DEER SPONGIFORM ENCEPHALOPATHY SURVEY & HOUND STUDY 

Date: Fri, 18 Oct 2002 23:12:22 +0100 

From: Steve Dealler 

Reply-To: Bovine Spongiform Encephalopathy Organization: Netscape Online member 

To: BSE-L@ References: <3daf5023 .4080804="" wt.net="">

Dear Terry,

An excellent piece of review as this literature is desparately difficult to get back from Government sites.

What happened with the deer was that an association between deer meat eating and sporadic CJD was found in about 1993. The evidence was not great but did not disappear after several years of asking CJD cases what they had eaten. I think that the work into deer disease largely stopped because it was not helpful to the UK industry...and no specific cases were reported. Well, if you dont look adequately like they are in USA currenly then you wont find any!

Steve Dealler 

=============== 


''The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04).''

CREUTZFELDT JAKOB DISEASE SURVEILLANCE IN THE UNITED KINGDOM THIRD ANNUAL REPORT AUGUST 1994

Consumption of venison and veal was much less widespread among both cases and controls. For both of these meats there was evidence of a trend with increasing frequency of consumption being associated with increasing risk of CJD. (not nvCJD, but sporadic CJD...tss) These associations were largely unchanged when attention was restricted to pairs with data obtained from relatives. ...

Table 9 presents the results of an analysis of these data.

There is STRONG evidence of an association between ‘’regular’’ veal eating and risk of CJD (p = .0.01).

Individuals reported to eat veal on average at least once a year appear to be at 13 TIMES THE RISK of individuals who have never eaten veal.

There is, however, a very wide confidence interval around this estimate. There is no strong evidence that eating veal less than once per year is associated with increased risk of CJD (p = 0.51).

The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04).

There is some evidence that risk of CJD INCREASES WITH INCREASING FREQUENCY OF LAMB EATING (p = 0.02).

The evidence for such an association between beef eating and CJD is weaker (p = 0.14). When only controls for whom a relative was interviewed are included, this evidence becomes a little STRONGER (p = 0.08).

snip...

It was found that when veal was included in the model with another exposure, the association between veal and CJD remained statistically significant (p = < 0.05 for all exposures), while the other exposures ceased to be statistically significant (p = > 0.05).

snip...

In conclusion, an analysis of dietary histories revealed statistical associations between various meats/animal products and INCREASED RISK OF CJD. When some account was taken of possible confounding, the association between VEAL EATING AND RISK OF CJD EMERGED AS THE STRONGEST OF THESE ASSOCIATIONS STATISTICALLY. ...

snip...

In the study in the USA, a range of foodstuffs were associated with an increased risk of CJD, including liver consumption which was associated with an apparent SIX-FOLD INCREASE IN THE RISK OF CJD. By comparing the data from 3 studies in relation to this particular dietary factor, the risk of liver consumption became non-significant with an odds ratio of 1.2 (PERSONAL COMMUNICATION, PROFESSOR A. HOFMAN. ERASMUS UNIVERSITY, ROTTERDAM). (???...TSS)

snip...see full report ;




Stephen Dealler is a consultant medical microbiologist  deal@airtime.co.uk 

BSE Inquiry Steve Dealler

Management In Confidence

BSE: Private Submission of Bovine Brain Dealler

snip...see full text;

MONDAY, FEBRUARY 25, 2019

***> MAD DOGS AND ENGLISHMEN BSE, SCRAPIE, CWD, CJD, TSE PRION A REVIEW 2019

***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.***

Even if the prevailing view is that sporadic CJD is due to the spontaneous formation of CJD prions, it remains possible that its apparent sporadic nature may, at least in part, result from our limited capacity to identify an environmental origin.

https://www.nature.com/articles/srep11573 

O.05: Transmission of prions to primates after extended silent incubation periods: Implications for BSE and scrapie risk assessment in human populations 
Emmanuel Comoy, Jacqueline Mikol, Valerie Durand, Sophie Luccantoni, Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys Atomic Energy Commission; Fontenay-aux-Roses, France 

Prion diseases (PD) are the unique neurodegenerative proteinopathies reputed to be transmissible under field conditions since decades. The transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that an animal PD might be zoonotic under appropriate conditions. Contrarily, in the absence of obvious (epidemiological or experimental) elements supporting a transmission or genetic predispositions, PD, like the other proteinopathies, are reputed to occur spontaneously (atpical animal prion strains, sporadic CJD summing 80% of human prion cases). 

Non-human primate models provided the first evidences supporting the transmissibiity of human prion strains and the zoonotic potential of BSE. Among them, cynomolgus macaques brought major information for BSE risk assessment for human health (Chen, 2014), according to their phylogenetic proximity to humans and extended lifetime. We used this model to assess the zoonotic potential of other animal PD from bovine, ovine and cervid origins even after very long silent incubation periods. 

*** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period, 

***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014), 

***is the third potentially zoonotic PD (with BSE and L-type BSE), 

***thus questioning the origin of human sporadic cases. 

We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health. 

=============== 

***thus questioning the origin of human sporadic cases*** 

=============== 

***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals. 

============== 

https://prion2015.files.wordpress.com/2015/05/prion2015abstracts.pdf 

***Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice. 

***Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 

http://www.tandfonline.com/doi/abs/10.1080/19336896.2016.1163048?journalCode=kprn20 

PRION 2016 TOKYO

Saturday, April 23, 2016

SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016

Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online

Taylor & Francis

Prion 2016 Animal Prion Disease Workshop Abstracts

WS-01: Prion diseases in animals and zoonotic potential

Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 

http://www.tandfonline.com/doi/abs/10.1080/19336896.2016.1163048?journalCode=kprn20

Title: Transmission of scrapie prions to primate after an extended silent incubation period) 

*** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS. 

*** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated. 

*** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains. 

http://www.ars.usda.gov/research/publications/publications.htm?SEQ_NO_115=313160

GAME FARM INDUSTRY WANTS TO COVER UP FINDINGS OF INCREASE RISK TO CJD FROM CERVID

BSE INQUIRY

CJD9/10022

October 1994

Mr R.N. Elmhirst Chairman British Deer Farmers Association Holly Lodge Spencers Lane 

BerksWell Coventry CV7 7BZ

Dear Mr Elmhirst,

CREUTZFELDT-JAKOB DISEASE (CJD) SURVEILLANCE UNIT REPORT

Thank you for your recent letter concerning the publication of the third annual report from the CJD Surveillance Unit. I am sorry that you are dissatisfied with the way in which this report was published.

The Surveillance Unit is a completely independant outside body and the Department of Health is committed to publishing their reports as soon as they become available. In the circumstances it is not the practice to circulate the report for comment since the findings of the report would not be amended.. In future we can ensure that the British Deer Farmers Association receives a copy of the report in advance of publication.

The Chief Medical Officer has undertaken to keep the public fully informed of the results of any research in respect of CJD. This report was entirely the work of the unit and was produced completely independantly of the the Department.

The statistical results regarding the consumption of venison was put into perspective in the body of the report and was not mentioned at all in the press release. Media attention regarding this report was low key but gave a realistic presentation of the statistical findings of the Unit. This approach to publication was successful in that consumption of venison was highlighted only once by the media ie. in the News at one television proqramme.

I believe that a further statement about the report, or indeed statistical links between CJD and consumption of venison, would increase, and quite possibly give damaging credence, to the whole issue. From the low key media reports of which I am aware it seems unlikely that venison consumption will suffer adversely, if at all. 


Recently the question has again been brought up as to whether scrapie is transmissible to man. This has followed reports that the disease has been transmitted to primates. One particularly lurid speculation (Gajdusek 1977) conjectures that the agents of scrapie, kuru, Creutzfeldt-Jakob disease and transmissible encephalopathy of mink are varieties of a single "virus". The U.S. Department of Agriculture concluded that it could "no longer justify or permit scrapie-blood line and scrapie-exposed sheep and goats to be processed for human or animal food at slaughter or rendering plants" (ARC 84/77)" The problem is emphasized by the finding that some strains of scrapie produce lesions identical to the once which characterize the human dementias"

Whether true or not. the hypothesis that these agents might be transmissible to man raises two considerations. First, the safety of laboratory personnel requires prompt attention. Second, action such as the "scorched meat" policy of USDA makes the solution of the scrapie problem urgent if the sheep industry is not to suffer grievously.

snip...

76/10.12/4.6


IN CONFIDENCE

SCRAPIE TRANSMISSION TO CHIMPANZEES

IN CONFIDENCE

reference...

RB3.20

TRANSMISSION TO CHIMPANZEES

1. Kuru and CJD have been successfully transmitted to chimpanzees but scrapie and TME have not.

2. We cannot say that scrapie will not transmit to chimpanzees. There are several scrapie strains and I am not aware that all have been tried (that would have to be from mouse passaged material). Nor has a wide enough range of field isolates subsequently strain typed in mice been inoculated by the appropriate routes (i/c, ilp and i/v) :

3. I believe the proposed experiment to determine transmissibility, if conducted, would only show the susceptibility or resistance of the chimpanzee to infection/disease by the routes used and the result could not be interpreted for the predictability of the susceptibility for man. Proposals for prolonged oral exposure of chimpanzees to milk from cattle were suggested a long while ago and rejected.

4. In view of Dr Gibbs' probable use of chimpazees Mr Wells' comments (enclosed) are pertinent. I have yet to receive a direct communication from Dr Schellekers but before any collaboration or provision of material we should identify the Gibbs' proposals and objectives.

5. A positive result from a chimpanzee challenged severely would likely create alarm in some circles even if the result could not be interpreted for man. I have a view that all these agents could be transmitted provided a large enough dose by appropriate routes was given and the animals kept long enough. Until the mechanisms of the species barrier are more clearly understood it might be best to retain that hypothesis.

6. A negative result would take a lifetime to determine but that would be a shorter period than might be available for human exposure and it would still not answer the question regarding mans' susceptibility. In the meantime no doubt the negativity would be used defensively. It would however be counterproductive if the experiment finally became positive. We may learn more about public reactions following next Monday' s meeting.

R. Bradley

23 September 1990

CVO (+Mr Wells' comments)

Dr T W A Little

Dr B J Shreeve

90/9.23/1.1.


IN CONFIDENCE CHIMPANZEES

CODE 18-77 Reference RB3.46

Some further information that may assist in decision making has been gained by discussion with Dr Rosalind Ridley.

She says that careful study of Gajdusek's work shows no increased susceptibility of chimpanzees over New World Monkeys such as Squirrel Monkeys. She does not think it would tell you anything about the susceptibility to man. Also Gajdusek did not, she believes, challenge chimpanzees with scrapie as severely as we did pigs and we know little of that source of scrapie. Comparisons would be difficult. She also would not expect the Home Office to sanction such experiments here unless there was a very clear and important objective that would be important for human health protection. She doubted such a case could be made. If this is the case she thought it would be unethical to do an experiment abroad because we could not do it in our own country.

Retrospectively she feels they should have put up more marmosets than they did. They all remain healthy. They would normally regard the transmission as negative if no disease resulted in five years.

We are not being asked for a decision but I think that before we made one we should gain as much knowledge as we can. If we decided to proceed we would have to bear any criticisms for many years if there was an adverse view by scientists or ­media. This should not be undertaken lightly. There is already some adverse comment here, I gather, on the pig experiment though that will subside.

The Gibbs' (as' distinct from Schellekers') study is somewhat different. We are merely supplying material for comparative studies in a laboratory with the greatest experience of human SEs in the world and it has been sanctioned by USDA (though we do not know for certain yet if chimpanzees specifically will be used). This would keep it at a lower profile than if we conducted such an experiment in the UK or Europe.

I consider we must have very powerful and defendable objectives to go beyond Gibbs' proposed experiments and should not initiate others just because an offer has been made.

Scientists have a responsibility to seek other methods of investigative research other than animal experimentation. At present no objective has convinced me we need to do research using Chimpanzees - a species in need of protection. Resisting such proposals would enable us to communicate that information to the scientist and the public should the need arise. A line would have been drawn.

CVO cc Dr T Dr B W A Little Dr B J Shreeve

R Bradley

26 September 1990

90/9.26/3.2


this is tse prion political theater here, i.e. what i call TSE PRION POKER...tss



3. Prof. A. Robertson gave a brief account of BSE. The US approach was to accord it a very low profile indeed. Dr. A Thiermann showed the picture in the ''Independent'' with cattle being incinerated and thought this was a fanatical incident to be avoided in the US at all costs.

snip...

PAGE 26

Transmission Studies

Mule deer transmissions of CWD were by intracerebral inoculation and compared with natural cases {the following was written but with a single line marked through it ''first passage (by this route)}....TSS

resulted in a more rapidly progressive clinical disease with repeated episodes of synocopy ending in coma. One control animal became affected, it is believed through contamination of inoculum (?saline). Further CWD transmissions were carried out by Dick Marsh into ferret, mink and squirrel monkey. Transmission occurred in ALL of these species with the shortest incubation period in the ferret.

The occurrence of CWD must be viewed against the contest of the locations in which it occurred. It was an incidental and unwelcome complication of the respective wildlife research programmes. Despite its subsequent recognition as a new disease of cervids, therefore justifying direct investigation, no specific research funding was forthcoming. The USDA viewed it as a wildlife problem and consequently not their province! ...page 26. 

snip...see;

IN CONFIDENCE

PERCEPTIONS OF UNCONVENTIONAL SLOW VIRUS DISEASE OF ANIMALS IN THE USA

GAH WELLS

REPORT OF A VISIT TO THE USA

APRIL-MAY 1989


why do we not want to do TSE transmission studies on chimpanzees $

5. A positive result from a chimpanzee challenged severly would likely create alarm in some circles even if the result could not be interpreted for man. 

***> I have a view that all these agents could be transmitted provided a large enough dose by appropriate routes was given and the animals kept long enough. 

***> Until the mechanisms of the species barrier are more clearly understood it might be best to retain that hypothesis.

snip...


1985

Evidence That Transmissible Mink Encephalopathy Results from Feeding Infected Cattle Over the next 8-10 weeks, approximately 40% of all the adult mink on the farm died from TME. 

snip... 

The rancher was a ''dead stock'' feeder using mostly (>95%) downer or dead dairy cattle... 




Terry S. Singeltary Sr.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.

INFECTED BLOOD INQUIRY THE REPORT MAY 20, 2024

INFECTED BLOOD INQUIRY THE REPORT MAY 20, 2024 Presented to the House of Commons pursuant to section 26 of the Inquiries Act 2005. 20 May 20...